Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristen E. Boyle is active.

Publication


Featured researches published by Kristen E. Boyle.


Journal of Clinical Investigation | 2009

Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans

Ethan J. Anderson; Mary E. Lustig; Kristen E. Boyle; Tracey L. Woodlief; Daniel A. Kane; Chien-Te Lin; Jesse W. Price; Li Kang; Peter S. Rabinovitch; Hazel H. Szeto; Joseph A. Houmard; Ronald N. Cortright; David H. Wasserman; P. Darrell Neufer

High dietary fat intake leads to insulin resistance in skeletal muscle, and this represents a major risk factor for type 2 diabetes and cardiovascular disease. Mitochondrial dysfunction and oxidative stress have been implicated in the disease process, but the underlying mechanisms are still unknown. Here we show that in skeletal muscle of both rodents and humans, a diet high in fat increases the H(2)O(2)-emitting potential of mitochondria, shifts the cellular redox environment to a more oxidized state, and decreases the redox-buffering capacity in the absence of any change in mitochondrial respiratory function. Furthermore, we show that attenuating mitochondrial H(2)O(2) emission, either by treating rats with a mitochondrial-targeted antioxidant or by genetically engineering the overexpression of catalase in mitochondria of muscle in mice, completely preserves insulin sensitivity despite a high-fat diet. These findings place the etiology of insulin resistance in the context of mitochondrial bioenergetics by demonstrating that mitochondrial H(2)O(2) emission serves as both a gauge of energy balance and a regulator of cellular redox environment, linking intracellular metabolic balance to the control of insulin sensitivity.


Diabetes | 2009

Increased Secretion and Expression of Myostatin in Skeletal Muscle from Extremely Obese Women

Dustin S. Hittel; Jason R. Berggren; Jane Shearer; Kristen E. Boyle; Joseph A. Houmard

OBJECTIVE—Obesity is associated with endocrine abnormalities that predict the progression of insulin resistance to type 2 diabetes. Because skeletal muscle has been shown to secrete proteins that could be used as biomarkers, we characterized the secreted protein profile of muscle cells derived from extremely obese (BMI 48.8 ± 14.8 kg/m2; homeostasis model assessment [HOMA] 3.6 ± 1.0) relative to lean healthy subjects (BMI 25.7 ± 3.2 kg/m2; HOMA 0.8 ± 0.2). RESEARCH DESIGN AND METHODS—We hypothesized that skeletal muscle would secrete proteins that predict the severity of obesity. To test this hypothesis, we used a “bottom-up” experimental design using stable isotope labeling by amino acids in culture (SILAC) and liquid chromatography/mass spectometry/mass spectometry (LC-MS/MS) to both identify and quantify proteins secreted from cultured myotubes derived from extremely obese compared with healthy nonobese women. RESULTS—Using SILAC, we discovered a 2.9-fold increase in the secretion of myostatin from extremely obese human myotubes. The increased secretion and biological activity of myostatin were validated by immunoblot (3.16 ± 0.18, P < 0.01) and a myoblast proliferation assay using conditioned growth medium. Myostatin was subsequently shown to increase in skeletal muscle (23%, P < 0.05) and plasma (35%, P < 0.05) and to correlate (r2 = 0.6, P < 0.05) with the severity of insulin resistance. CONCLUSIONS—Myostatin is a potent antianabolic regulator of muscle mass that may also play a role in energy metabolism. These findings show that increased expression of myostatin in skeletal muscle with obesity and insulin resistance results in elevated circulating myostatin. This may contribute to systemic metabolic deterioration of skeletal muscle with the progression of insulin resistance to type 2 diabetes.


American Journal of Physiology-endocrinology and Metabolism | 2008

Skeletal muscle lipid oxidation and obesity: influence of weight loss and exercise

Jason R. Berggren; Kristen E. Boyle; William H. Chapman; Joseph A. Houmard

Obesity is associated with a decrement in the ability of skeletal muscle to oxidize lipid. The purpose of this investigation was to determine whether clinical interventions (weight loss, exercise training) could reverse the impairment in fatty acid oxidation (FAO) evident in extremely obese individuals. FAO was assessed by incubating skeletal muscle homogenates with [1-(14)C]palmitate and measuring (14)CO(2) production. Weight loss was studied using both cross-sectional and longitudinal designs. Muscle FAO in extremely obese women who had lost weight (decrease in body mass of approximately 50 kg) was compared with extremely obese and lean individuals (BMI of 22.8 +/- 1.2, 50.7 +/- 3.9, and 36.5 +/- 3.5 kg/m(2) for lean, obese, and obese after weight loss, respectively). There was no difference in muscle FAO between the extremely obese and weight loss groups, and FAO was depressed (-45%; P < or = 0.05) compared with the lean subjects. Muscle FAO also did not change in extremely obese women (n = 8) before and 1 yr after a 55-kg weight loss. In contrast, 10 consecutive days of exercise training increased (P < or = 0.05) FAO in the skeletal muscle of lean (+1.7-fold), obese (+1.8-fold), and previously extremely obese subjects after weight loss (+2.6-fold). mRNA content for PDK4, CPT I, and PGC-1alpha corresponded with FAO in that there were no changes with weight loss and an increase with physical activity. These data indicate that a defect in the ability to oxidize lipid in skeletal muscle is evident with obesity, which is corrected with exercise training but persists after weight loss.


The Journal of Clinical Endocrinology and Metabolism | 2013

Skeletal Muscle MnSOD, Mitochondrial Complex II, and SIRT3 Enzyme Activities Are Decreased in Maternal Obesity During Human Pregnancy and Gestational Diabetes Mellitus

Kristen E. Boyle; Sean A. Newsom; Rachel C. Janssen; Martha Lappas; Jacob E. Friedman

CONTEXT Insulin resistance and systemic oxidative stress are prominent features of pregnancies complicated by maternal obesity or gestational diabetes mellitus (GDM). The role of skeletal muscle oxidative stress or mitochondrial capacity in obese pregnant women or obese women with GDM is unknown. OBJECTIVE We investigated whether obese pregnant women, compared with normal weight (NW) pregnant women, demonstrate decreased skeletal muscle mitochondrial enzyme activity and elevated markers of oxidative stress, and if these differences are more severe in obese women diagnosed with GDM. DESIGN We measured mitochondrial enzyme activity and markers of oxidative stress in skeletal muscle tissue from NW pregnant women (n = 10), obese pregnant women with normal glucose tolerance (NGT; n = 10), and obese pregnant women with GDM (n = 8), undergoing cesarean delivery (∼37 wk gestation). RESULTS Electron transport complex-II and manganese superoxide dismutase (MnSOD) enzyme activities were decreased in obese-NGT and obese-GDM, compared with NW women. The glutathione redox ratio (GSH:GSSG) was decreased in obese-NGT and obese-GDM, indicative of increased oxidative stress. Mitochondrial sirtuin (SIRT)3 mRNA content and enzyme activity were lower in skeletal muscle of obese-NGT and obese-GDM women. Importantly, acetylation of MnSOD, a SIRT3 target, was increased in obese-NGT and obese-GDM vs NW women and was inversely correlated with SIRT3 activity (r = -0.603), suggesting a mechanism for reduced MnSOD activity. CONCLUSIONS These data show that obese pregnant women demonstrate decreased skeletal muscle mitochondrial respiratory chain enzyme activity and decreased mitochondrial antioxidant defense. Furthermore, reduced skeletal muscle SIRT3 activity may play a role in the increased oxidative stress associated with pregnancies complicated by obesity.


Diabetes | 2016

Mesenchymal Stem Cells From Infants Born to Obese Mothers Exhibit Greater Potential for Adipogenesis: The Healthy Start BabyBUMP Project

Kristen E. Boyle; Zachary W. Patinkin; Allison L.B. Shapiro; Peter R. Baker; Dana Dabelea; Jacob E. Friedman

Maternal obesity increases the risk for pediatric obesity; however, the molecular mechanisms in human infants remain poorly understood. We hypothesized that mesenchymal stem cells (MSCs) from infants born to obese mothers would demonstrate greater potential for adipogenesis and less potential for myogenesis, driven by differences in β-catenin, a regulator of MSC commitment. MSCs were cultured from the umbilical cords of infants born to normal-weight (prepregnancy [pp] BMI 21.1 ± 0.3 kg/m2; n = 15; NW-MSCs) and obese mothers (ppBMI 34.6 ± 1.0 kg/m2; n = 14; Ob-MSCs). Upon differentiation, Ob-MSCs exhibit evidence of greater adipogenesis (+30% Oil Red O stain [ORO], +50% peroxisome proliferator–activated receptor (PPAR)-γ protein; P < 0.05) compared with NW-MSCs. In undifferentiated cells, total β-catenin protein content was 10% lower and phosphorylated Thr41Ser45/total β-catenin was 25% higher (P < 0.05) in Ob-MSCs versus NW-MSCs (P < 0.05). Coupled with 25% lower inhibitory phosphorylation of GSK-3β in Ob-MSCs (P < 0.05), these data suggest greater β-catenin degradation in Ob-MSCs. Lithium chloride inhibition of GSK-3β increased nuclear β-catenin content and normalized nuclear PPAR-γ in Ob-MSCs. Last, ORO in adipogenic differentiating cells was positively correlated with the percent fat mass in infants (r = 0.475; P < 0.05). These results suggest that altered GSK-3β/β-catenin signaling in MSCs of infants exposed to maternal obesity may have important consequences for MSC lineage commitment, fetal fat accrual, and offspring obesity risk.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Interleukin 37 reverses the metabolic cost of inflammation, increases oxidative respiration, and improves exercise tolerance

Giulio Cavalli; Jamie N. Justice; Kristen E. Boyle; Angelo D'Alessandro; Elan Z. Eisenmesser; Jonathan J. Herrera; Kirk C. Hansen; Travis Nemkov; Rinke Stienstra; Cecilia Garlanda; Alberto Mantovani; Douglas R. Seals; Lorenzo Dagna; Leo A. B. Joosten; Dov B. Ballak; Charles A. Dinarello

Significance Interleukin 1 family member IL-37 is a naturally occurring inhibitor of inflammation. In this study, exogenous administration of recombinant human IL-37 reversed the decrease in exercise performance observed during systemic inflammation. IL-37 also increased exercise performance in healthy mice. IL-37 treatment acted through a dual mechanism of suppression of inflammation and modulation of metabolic pathways. The implications of the present findings impact on patients with chronic inflammatory diseases spanning from rheumatoid arthritis to cancer, in which fatigue is often incapacitating, and provide rationale for exploring recombinant IL-37 in the treatment of inflammation-mediated fatigue. IL-1 family member interleukin 37 (IL-37) has broad antiinflammatory properties and functions as a natural suppressor of innate inflammation. In this study, we demonstrate that treatment with recombinant human IL-37 reverses the decrease in exercise performance observed during systemic inflammation. This effect was associated with a decrease in the levels of plasma and muscle cytokines, comparable in extent to that obtained upon IL-1 receptor blockade. Exogenous administration of IL-37 to healthy mice, not subjected to an inflammatory challenge, also improved exercise performance by 82% compared with vehicle-treated mice (P = 0.01). Treatment with eight daily doses of IL-37 resulted in a further 326% increase in endurance running time compared with the performance level of mice receiving vehicle (P = 0.001). These properties required the engagement of the IL-1 decoy receptor 8 (IL-1R8) and the activation of AMP-activated protein kinase (AMPK), because both inhibition of AMPK and IL-1R8 deficiency abrogated the positive effects of IL-37 on exercise performance. Mechanistically, treatment with IL-37 induced marked metabolic changes with higher levels of muscle AMPK, greater rates of oxygen consumption, and increased oxidative phosphorylation. Metabolomic analyses of plasma and muscles of mice treated with IL-37 revealed an increase in AMP/ATP ratio, reduced levels of proinflammatory mediator succinate and oxidative stress-related metabolites, as well as changes in amino acid and purine metabolism. These effects of IL-37 to limit the metabolic costs of chronic inflammation and to foster exercise tolerance provide a rationale for therapeutic use of IL-37 in the treatment of inflammation-mediated fatigue.


PLOS ONE | 2014

Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle.

Kristen E. Boyle; Hyonson Hwang; Rachel C. Janssen; James M. DeVente; Linda A. Barbour; Teri L. Hernandez; Lawrence J. Mandarino; Martha Lappas; Jacob E. Friedman

The rising prevalence of gestational diabetes mellitus (GDM) affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM) and obese pregnant women with normal glucose tolerance (ONGT). Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I) subunits (NDUFS3, NDUFV2) and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4) in OGDM (n = 6) vs. ONGT (n = 6). Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (−60–75%) in the OGDM (n = 8) compared with ONGT (n = 10) subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.


Obesity | 2015

Metabolomic analysis reveals altered skeletal muscle amino acid and fatty acid handling in obese humans

Peter R. Baker; Kristen E. Boyle; Timothy R. Koves; Olga Ilkayeva; Deborah M. Muoio; Joseph A. Houmard; Jacob E. Friedman

Investigate the effects of obesity and high‐fat diet (HFD) exposure on fatty acid oxidation and TCA cycle intermediates and amino acids in skeletal muscle to better characterize energy metabolism.


Molecular Imaging and Biology | 2015

Inhibition of Lipid Oxidation Increases Glucose Metabolism and Enhances 2-Deoxy-2-[ 18 F]Fluoro- d -Glucose Uptake in Prostate Cancer Mouse Xenografts

Isabel R. Schlaepfer; L. Michael Glode; Carolyn A. Hitz; Colton T. Pac; Kristen E. Boyle; Paul Maroni; Gagan Deep; Rajesh Agarwal; Scott Lucia; Scott D. Cramer; Natalie J. Serkova; Robert H. Eckel

PurposeProstate cancer (PCa) is the second most common cause of cancer-related death among men in the United States. Due to the lipid-driven metabolic phenotype of PCa, imaging with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) is suboptimal, since tumors tend to have low avidity for glucose.ProceduresWe have used the fat oxidation inhibitor etomoxir (2-[6-(4-chlorophenoxy)-hexyl]oxirane-2-carboxylate) that targets carnitine-palmitoyl-transferase-1 (CPT-1) to increase glucose uptake in PCa cell lines. Small hairpin RNA specific for CPT1A was used to confirm the glycolytic switch induced by etomoxir in vitro. Systemic etomoxir treatment was used to enhance [18F]FDG-positron emission tomography ([18F]FDG-PET) imaging in PCa xenograft mouse models in 24 h.ResultsPCa cells significantly oxidize more of circulating fatty acids than benign cells via CPT-1 enzyme, and blocking this lipid oxidation resulted in activation of the Warburg effect and enhanced [18F]FDG signal in PCa mouse models.ConclusionsInhibition of lipid oxidation plays a major role in elevating glucose metabolism of PCa cells, with potential for imaging enhancement that could also be extended to other cancers.


Molecular metabolism | 2017

Maternal obesity alters fatty acid oxidation, AMPK activity, and associated DNA methylation in mesenchymal stem cells from human infants

Kristen E. Boyle; Zachary W. Patinkin; Allison L.B. Shapiro; Carly Bader; Lauren A. Vanderlinden; Katerina Kechris; Rachel C. Janssen; Rebecca J. Ford; Brennan K. Smith; Gregory R. Steinberg; Elizabeth J. Davidson; Ivana V. Yang; Dana Dabelea; Jacob E. Friedman

Objective Infants born to mothers with obesity have greater adiposity, ectopic fat storage, and are at increased risk for childhood obesity and metabolic disease compared with infants of normal weight mothers, though the cellular mechanisms mediating these effects are unclear. Methods We tested the hypothesis that human, umbilical cord-derived mesenchymal stem cells (MSCs) from infants born to obese (Ob-MSC) versus normal weight (NW-MSC) mothers demonstrate altered fatty acid metabolism consistent with adult obesity. In infant MSCs undergoing myogenesis in vitro, we measured cellular lipid metabolism and AMPK activity, AMPK activation in response to cellular nutrient stress, and MSC DNA methylation and mRNA content of genes related to oxidative metabolism. Results We found that Ob-MSCs exhibit greater lipid accumulation, lower fatty acid oxidation (FAO), and dysregulation of AMPK activity when undergoing myogenesis in vitro. Further experiments revealed a clear phenotype distinction within the Ob-MSC group where more severe MSC metabolic perturbation corresponded to greater neonatal adiposity and umbilical cord blood insulin levels. Targeted analysis of DNA methylation array revealed Ob-MSC hypermethylation in genes regulating FAO (PRKAG2, ACC2, CPT1A, SDHC) and corresponding lower mRNA content of these genes. Moreover, MSC methylation was positively correlated with infant adiposity. Conclusions These data suggest that greater infant adiposity is associated with suppressed AMPK activity and reduced lipid oxidation in MSCs from infants born to mothers with obesity and may be an important, early marker of underlying obesity risk.

Collaboration


Dive into the Kristen E. Boyle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter R. Baker

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Allison L.B. Shapiro

Colorado School of Public Health

View shared research outputs
Top Co-Authors

Avatar

Dana Dabelea

Colorado School of Public Health

View shared research outputs
Top Co-Authors

Avatar

Rachel C. Janssen

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Zachary W. Patinkin

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge