Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olga Ilkayeva is active.

Publication


Featured researches published by Olga Ilkayeva.


Cell Metabolism | 2009

A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance

Christopher B. Newgard; James R. Bain; Michael J. Muehlbauer; Robert D. Stevens; Lillian F. Lien; Andrea M. Haqq; Svati H. Shah; Michelle Arlotto; Cris A. Slentz; James Rochon; Dianne Gallup; Olga Ilkayeva; Brett R. Wenner; William S. Yancy; Howard Eisenson; Gerald Musante; Richard S. Surwit; David S. Millington; Mark D. Butler; Laura P. Svetkey

Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA), or standard chow (SC) diets. Despite having reduced food intake and a low rate of weight gain equivalent to the SC group, HF/BCAA rats were as insulin resistant as HF rats. Pair-feeding of HF diet to match the HF/BCAA animals or BCAA addition to SC diet did not cause insulin resistance. Insulin resistance induced by HF/BCAA feeding was accompanied by chronic phosphorylation of mTOR, JNK, and IRS1Ser307 and by accumulation of multiple acylcarnitines in muscle, and it was reversed by the mTOR inhibitor, rapamycin. Our findings show that in the context of a dietary pattern that includes high fat consumption, BCAA contributes to development of obesity-associated insulin resistance.


Science | 2013

Gut microbiota from twins discordant for obesity modulate metabolism in mice.

Vanessa K. Ridaura; Jeremiah J. Faith; Federico E. Rey; Jiye Cheng; Alexis E. Duncan; Andrew L. Kau; Nicholas W. Griffin; Vincent Lombard; Bernard Henrissat; James R. Bain; Michael J. Muehlbauer; Olga Ilkayeva; Clay F. Semenkovich; Katsuhiko Funai; David K. Hayashi; Barbara J. Lyle; Margaret C. Martini; Luke K. Ursell; Jose C. Clemente; William Van Treuren; William A. Walters; Rob Knight; Christopher B. Newgard; Andrew C. Heath; Jeffrey I. Gordon

Introduction Establishing whether specific structural and functional configurations of a human gut microbiota are causally related to a given physiologic or disease phenotype is challenging. Twins discordant for obesity provide an opportunity to examine interrelations between obesity and its associated metabolic disorders, diet, and the gut microbiota. Transplanting the intact uncultured or cultured human fecal microbiota from each member of a discordant twin pair into separate groups of recipient germfree mice permits the donors’ communities to be replicated, differences between their properties to be identified, the impact of these differences on body composition and metabolic phenotypes to be discerned, and the effects of diet-by-microbiota interactions to be analyzed. In addition, cohousing coprophagic mice harboring transplanted microbiota from discordant pairs provides an opportunity to determine which bacterial taxa invade the gut communities of cage mates, how invasion correlates with host phenotypes, and how invasion and microbial niche are affected by human diets. Cohousing Ln and Ob mice prevents increased adiposity in Ob cage mates (Ob). (A) Adiposity change after 10 days of cohousing. *P < 0.05 versus Ob controls (Student’s t test). (B) Bacteroidales from Ln microbiota invade Ob microbiota. Columns show individual mice. Methods Separate groups of germfree mice were colonized with uncultured fecal microbiota from each member of four twin pairs discordant for obesity or with culture collections from an obese (Ob) or lean (Ln) co-twin. Animals were fed a mouse chow low in fat and rich in plant polysaccharides, or one of two diets reflecting the upper or lower tertiles of consumption of saturated fats and fruits and vegetables based on the U.S. National Health and Nutrition Examination Survey (NHANES). Ln or Ob mice were cohoused 5 days after colonization. Body composition changes were defined by quantitative magnetic resonance. Microbiota or microbiome structure, gene expression, and metabolism were assayed by 16S ribosomal RNA profiling, whole-community shotgun sequencing, RNA-sequencing, and mass spectrometry. Host gene expression and metabolism were also characterized. Results and Discussion The intact uncultured and culturable bacterial component of Ob co-twins’ fecal microbiota conveyed significantly greater increases in body mass and adiposity than those of Ln communities. Differences in body composition were correlated with differences in fermentation of short-chain fatty acids (increased in Ln), metabolism of branched-chain amino acids (increased in Ob), and microbial transformation of bile acid species (increased in Ln and correlated with down-regulation of host farnesoid X receptor signaling). Cohousing Ln and Ob mice prevented development of increased adiposity and body mass in Ob cage mates and transformed their microbiota’s metabolic profile to a leanlike state. Transformation correlated with invasion of members of Bacteroidales from Ln into Ob microbiota. Invasion and phenotypic rescue were diet-dependent and occurred with the diet representing the lower tertile of U.S. consumption of saturated fats, and upper tertile of fruits and vegetables, but not with the diet representing the upper tertile of saturated fats, and lower tertile of fruit and vegetable consumption. These results reveal that transmissible and modifiable interactions between diet and microbiota influence host biology. Transforming Fat to Thin How much does the microbiota influence the hosts phenotype? Ridaura et al. (1241214 ; see the Perspective by Walker and Parkhill) obtained uncultured fecal microbiota from twin pairs discordant for body mass and transplanted them into adult germ-free mice. It was discovered that adiposity is transmissible from human to mouse and that it was associated with changes in serum levels of branched-chain amino acids. Moreover, obese-phenotype mice were invaded by members of the Bacteroidales from the lean mice, but, happily, the lean animals resisted invasion by the obese microbiota. Mice carrying gut bacteria from lean humans protect their cage mates from the effects of gut bacteria from fat humans. [Also see Perspective by Walker and Parkhill] The role of specific gut microbes in shaping body composition remains unclear. We transplanted fecal microbiota from adult female twin pairs discordant for obesity into germ-free mice fed low-fat mouse chow, as well as diets representing different levels of saturated fat and fruit and vegetable consumption typical of the U.S. diet. Increased total body and fat mass, as well as obesity-associated metabolic phenotypes, were transmissible with uncultured fecal communities and with their corresponding fecal bacterial culture collections. Cohousing mice harboring an obese twin’s microbiota (Ob) with mice containing the lean co-twin’s microbiota (Ln) prevented the development of increased body mass and obesity-associated metabolic phenotypes in Ob cage mates. Rescue correlated with invasion of specific members of Bacteroidetes from the Ln microbiota into Ob microbiota and was diet-dependent. These findings reveal transmissible, rapid, and modifiable effects of diet-by-microbiota interactions.


Cell Metabolism | 2008

Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance.

Timothy R. Koves; John R. Ussher; Robert C. Noland; Dorothy H. Slentz; Merrie Mosedale; Olga Ilkayeva; James R. Bain; Robert D. Stevens; Jason R. B. Dyck; Christopher B. Newgard; Gary D. Lopaschuk; Deborah M. Muoio

Previous studies have suggested that insulin resistance develops secondary to diminished fat oxidation and resultant accumulation of cytosolic lipid molecules that impair insulin signaling. Contrary to this model, the present study used targeted metabolomics to find that obesity-related insulin resistance in skeletal muscle is characterized by excessive beta-oxidation, impaired switching to carbohydrate substrate during the fasted-to-fed transition, and coincident depletion of organic acid intermediates of the tricarboxylic acid cycle. In cultured myotubes, lipid-induced insulin resistance was prevented by manipulations that restrict fatty acid uptake into mitochondria. These results were recapitulated in mice lacking malonyl-CoA decarboxylase (MCD), an enzyme that promotes mitochondrial beta-oxidation by relieving malonyl-CoA-mediated inhibition of carnitine palmitoyltransferase 1. Thus, mcd(-/-) mice exhibit reduced rates of fat catabolism and resist diet-induced glucose intolerance despite high intramuscular levels of long-chain acyl-CoAs. These findings reveal a strong connection between skeletal muscle insulin resistance and lipid-induced mitochondrial stress.


Nature | 2010

SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation

Matthew D. Hirschey; Tadahiro Shimazu; Eric S. Goetzman; Enxuan Jing; Bjoern Schwer; David B. Lombard; Carrie A. Grueter; Charles Harris; Sudha B. Biddinger; Olga Ilkayeva; Robert D. Stevens; Yu Li; Asish K. Saha; Neil B. Ruderman; James R. Bain; Christopher B. Newgard; Robert V. Farese; Frederick W. Alt; C. Ronald Kahn; Eric Verdin

Sirtuins are NAD+-dependent protein deacetylases. They mediate adaptive responses to a variety of stresses, including calorie restriction and metabolic stress. Sirtuin 3 (SIRT3) is localized in the mitochondrial matrix, where it regulates the acetylation levels of metabolic enzymes, including acetyl coenzyme A synthetase 2 (refs 1, 2). Mice lacking both Sirt3 alleles appear phenotypically normal under basal conditions, but show marked hyperacetylation of several mitochondrial proteins. Here we report that SIRT3 expression is upregulated during fasting in liver and brown adipose tissues. During fasting, livers from mice lacking SIRT3 had higher levels of fatty-acid oxidation intermediate products and triglycerides, associated with decreased levels of fatty-acid oxidation, compared to livers from wild-type mice. Mass spectrometry of mitochondrial proteins shows that long-chain acyl coenzyme A dehydrogenase (LCAD) is hyperacetylated at lysine 42 in the absence of SIRT3. LCAD is deacetylated in wild-type mice under fasted conditions and by SIRT3 in vitro and in vivo; and hyperacetylation of LCAD reduces its enzymatic activity. Mice lacking SIRT3 exhibit hallmarks of fatty-acid oxidation disorders during fasting, including reduced ATP levels and intolerance to cold exposure. These findings identify acetylation as a novel regulatory mechanism for mitochondrial fatty-acid oxidation and demonstrate that SIRT3 modulates mitochondrial intermediary metabolism and fatty-acid use during fasting.


Science | 2013

Circadian Clock NAD+ Cycle Drives Mitochondrial Oxidative Metabolism in Mice

Clara Bien Peek; Alison H. Affinati; Kathryn Moynihan Ramsey; Hsin Yu Kuo; Wei Yu; Laura A. Sena; Olga Ilkayeva; Biliana Marcheva; Yumiko Kobayashi; Chiaki Omura; Daniel C. Levine; David J. Bacsik; David Gius; Christopher B. Newgard; Eric S. Goetzman; Navdeep S. Chandel; John M. Denu; Milan Mrksich; Joseph Bass

Introduction The circadian clock is a transcriptional oscillator that is thought to couple internal energetic processes with the solar cycle. Circadian oscillation in activity of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in nicotinamide adenine dinucleotide (NAD+) biosynthesis, feeds back to regulate activity of the deacetylase SIRT1 and transcription of genes encoding core clock components. Despite evidence that NAD+-dependent enzymes are important in fasting and oxidative metabolism, it is not known how the circadian cycle might affect this process. We investigated the role of clock control of NAD+ in mitochondrial dynamics and energy production. Circadian regulation of NAD+ biosynthesis synchronizes mitochondrial bioenergetics with the light-dark cycle. The core molecular clock is a transcription-translation oscillator composed of activators (CLOCK/BMAL1) that induce transcription of their own repressors (PER/CRY). Clock control of expression of the NAD+ biosynthetic enzyme NAMPT generates 24-hour variation of activity of the mitochondrial deacetylase SIRT3 and oxygen consumption. Rhythmic NAD+ oscillation couples mitochondrial bioenergetics with the light-dark cycle. Methods We determined the circadian variation in mitochondrial function by examining the adaptive response to fasting in liver of wild-type and circadian mutant mice. Quantitative analyses of NAD+ biosynthesis, lipid and glucose oxidation, and acetylation of mitochondrial proteins were performed across the circadian cycle in circadian mutant mice and in cell-based systems. Proteins displaying increased acetylation in Bmal1 mutant liver were identified by mass spectrometry, and SIRT3 activity was evaluated using label-free self-assembled monolayer and matrix desorption ionization (SAMDI) mass spectrometry in liver lysate from Bmal1 and Sirt3 knockout mice. The role of NAD+ deficiency in SIRT3 activity, mitochondrial protein acetylation, lipid oxidation, and oxygen consumption was evaluated after intraperitoneal administration of the NAD+ precursor NMN to raise NAD+ levels in Bmal1 mutant and wild-type mice. Results Lipid oxidation and mitochondrial protein acetylation exhibited circadian oscillations that corresponded with the clock-driven NAD+ cycle in mouse liver. Rhythmic NAD+ and oxidative cycles were self-sustained in fasted mice and in C2C12 myotubes, demonstrating clock control of mitochondrial function even when nutrient state remained constant. Transcription of glycolytic genes was antiphasic to lipid oxidation rhythms, and glycolytic gene expression and lactate production were increased in Bmal1–/– fibroblasts, whereas the converse occurred in Cry1–/–;Cry2–/– mutants. Lack of Bmal1 in liver led to decreased SIRT3 activity and increased mitochondrial protein acetylation, resulting in reduced function of oxidative enzymes. Finally, NAD+ supplementation with NMN restored protein deacetylation of SIRT3 targets and enhanced mitochondrial function in circadian mutant mice. Discussion Mitochondria are central to energy homeostasis in eukaryotes, and our results show that the circadian clock generates oscillations in mitochondrial oxidative capacity through rhythmic regulation of NAD+ biosynthesis. The clock thereby facilitates oxidative rhythms that correspond with the fasting-feeding cycle to maximize energy production during rest. Use of NAD+ as a central node in coupling circadian and metabolic cycles provides a rapid and reversible mechanism to augment mitochondrial oxidative function at the appropriate time in the light-dark cycle. Dinner Time! Biological clocks allow organisms to anticipate cycles of feeding, activity, and rest so that metabolic enzymes in mitochondria are ready when needed. Peek et al. (10.1126/science.1243417, published online 19 September; see the Perspective by Rey and Reddy) describe a mechanism by which the biochemical elements of the circadian clock are linked to such control of mitochondrial metabolism. The clock controls rhythmic transcription of the gene encoding the rate-limiting enzyme required for synthesis of nicotinamide adenine dinucleotide (NAD+). The concentration of NAD+ in mitochondria determines the activity of the deacetylase SIRT3, which then controls acetylation and activity of key metabolic enzymes. NAD+ also influences clock function, and thus appears to be a versatile point at which regulation of oxidative metabolism is coordinated with the daily cycles of energy consumption. The coenzyme nicotinamide adenine dinucleotide mechanistically links the circadian clock to control of energy production by mitochondria. [Also see Perspective by Rey and Reddy] Circadian clocks are self-sustained cellular oscillators that synchronize oxidative and reductive cycles in anticipation of the solar cycle. We found that the clock transcription feedback loop produces cycles of nicotinamide adenine dinucleotide (NAD+) biosynthesis, adenosine triphosphate production, and mitochondrial respiration through modulation of mitochondrial protein acetylation to synchronize oxidative metabolic pathways with the 24-hour fasting and feeding cycle. Circadian control of the activity of the NAD+-dependent deacetylase sirtuin 3 (SIRT3) generated rhythms in the acetylation and activity of oxidative enzymes and respiration in isolated mitochondria, and NAD+ supplementation restored protein deacetylation and enhanced oxygen consumption in circadian mutant mice. Thus, circadian control of NAD+ bioavailability modulates mitochondrial oxidative function and organismal metabolism across the daily cycles of fasting and feeding.


Diabetes | 2009

Metabolomics Applied to Diabetes Research: Moving From Information to Knowledge

James R. Bain; Robert D. Stevens; Brett R. Wenner; Olga Ilkayeva; Deborah M. Muoio; Christopher B. Newgard

Type 2 diabetes is caused by a complex set of interactions between genetic and environmental factors. Recent work has shown that human type 2 diabetes is a constellation of disorders associated with polymorphisms in a wide array of genes, with each individual gene accounting for <1% of disease risk (1). Moreover, type 2 diabetes involves dysfunction of multiple organ systems, including impaired insulin action in muscle and adipose, defective control of hepatic glucose production, and insulin deficiency caused by loss of β-cell mass and function (2). This complexity presents challenges for a full understanding of the molecular pathways that contribute to the development of this major disease. Progress in this area may be aided by the recent advent of technologies for comprehensive metabolic analysis, sometimes termed “metabolomics.” Herein, we summarize key metabolomics methodologies, including nuclear magnetic resonance (NMR) and mass spectrometry (MS)-based metabolic profiling technologies, and discuss “nontargeted” versus “targeted” approaches. Examples of the application of these tools to diabetes and metabolic disease research at the cellular, animal model, and human disease levels are summarized, with a particular focus on insights gained from the more quantitative targeted methodologies. We also provide early examples of integrated analysis of genomic, transcriptomic, and metabolomic datasets for gaining knowledge about metabolic regulatory networks and diabetes mechanisms and conclude by discussing prospects for future insights. In principal, metabolomics can provide certain advantages relative to other “omics” technologies (genomics, transcriptomics, proteomics) in diabetes research: 1 ) Estimates vary, but one current source, the Human Metabolome Database (HMDB)-Canada (3), currently lists ∼6,500 discrete small molecule metabolites, significantly less than the estimate of 25,000 genes, 100,000 transcripts, and 1,000,000 proteins. 2 ) Metabolomics measures chemical phenotypes that are the net result of genomic, transcriptomic, and proteomic variability, therefore providing the most integrated profile of biological status. 3 ) Metabolomics is in …


Cell Metabolism | 2014

Lysine Glutarylation Is a Protein Posttranslational Modification Regulated by SIRT5

Minjia Tan; Chao Peng; Kristin A. Anderson; Peter Chhoy; Zhongyu Xie; Lunzhi Dai; Jeongsoon Park; Yue Chen; He Huang; Yi Zhang; Jennifer Ro; Gregory R. Wagner; Michelle F. Green; Andreas Stahl Madsen; Jessica Schmiesing; Brett S. Peterson; Guofeng Xu; Olga Ilkayeva; Michael J. Muehlbauer; Thomas Braulke; Chris Mühlhausen; Donald S. Backos; Christian A. Olsen; Peter J. McGuire; Scott D. Pletcher; David B. Lombard; Matthew D. Hirschey; Yingming Zhao

We report the identification and characterization of a five-carbon protein posttranslational modification (PTM) called lysine glutarylation (Kglu). This protein modification was detected by immunoblot and mass spectrometry (MS), and then comprehensively validated by chemical and biochemical methods. We demonstrated that the previously annotated deacetylase, sirtuin 5 (SIRT5), is a lysine deglutarylase. Proteome-wide analysis identified 683 Kglu sites in 191 proteins and showed that Kglu is highly enriched on metabolic enzymes and mitochondrial proteins. We validated carbamoyl phosphate synthase 1 (CPS1), the rate-limiting enzyme in urea cycle, as a glutarylated protein and demonstrated that CPS1 is targeted by SIRT5 for deglutarylation. We further showed that glutarylation suppresses CPS1 enzymatic activity in cell lines, mice, and a model of glutaric acidemia type I disease, the last of which has elevated glutaric acid and glutaryl-CoA. This study expands the landscape of lysine acyl modifications and increases our understanding of the deacylase SIRT5.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Leptin therapy in insulin-deficient type I diabetes

May Yun Wang; Lijun Chen; Gregory O. Clark; Young Lee; Robert D. Stevens; Olga Ilkayeva; Brett R. Wenner; James R. Bain; Maureen J. Charron; Christopher B. Newgard; Roger H. Unger

In nonobese diabetic mice with uncontrolled type 1 diabetes, leptin therapy alone or combined with low-dose insulin reverses the catabolic state through suppression of hyperglucagonemia. Additionally, it mimics the anabolic actions of insulin monotherapy and normalizes hemoglobin A1c with far less glucose variability. We show that leptin therapy, like insulin, normalizes the levels of a wide array of hepatic intermediary metabolites in multiple chemical classes, including acylcarnitines, organic acids (tricarboxylic acid cycle intermediates), amino acids, and acyl CoAs. In contrast to insulin monotherapy, however, leptin lowers both lipogenic and cholesterologenic transcription factors and enzymes and reduces plasma and tissue lipids. The results imply that leptin administration may have multiple short- and long-term advantages over insulin monotherapy for type 1 diabetes.


Cell Metabolism | 2013

SIRT5 Regulates the Mitochondrial Lysine Succinylome and Metabolic Networks

Matthew J. Rardin; Wenjuan He; Yuya Nishida; John C. Newman; Chris Carrico; Steven R. Danielson; Ailan Guo; Philipp Gut; Alexandria K. Sahu; Biao Li; Radha Uppala; Mark Fitch; Timothy Riiff; Lei Zhu; Jing Zhou; Daniel Mulhern; Robert D. Stevens; Olga Ilkayeva; Christopher B. Newgard; Matthew P. Jacobson; Marc K. Hellerstein; Eric S. Goetzman; Bradford W. Gibson; Eric Verdin

Reversible posttranslational modifications are emerging as critical regulators of mitochondrial proteins and metabolism. Here, we use a label-free quantitative proteomic approach to characterize the lysine succinylome in liver mitochondria and its regulation by the desuccinylase SIRT5. A total of 1,190 unique sites were identified as succinylated, and 386 sites across 140 proteins representing several metabolic pathways including β-oxidation and ketogenesis were significantly hypersuccinylated in Sirt5(-/-) animals. Loss of SIRT5 leads to accumulation of medium- and long-chain acylcarnitines and decreased β-hydroxybutyrate production in vivo. In addition, we demonstrate that SIRT5 regulates succinylation of the rate-limiting ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) both in vivo and in vitro. Finally, mutation of hypersuccinylated residues K83 and K310 on HMGCS2 to glutamic acid strongly inhibits enzymatic activity. Taken together, these findings establish SIRT5 as a global regulator of lysine succinylation in mitochondria and present a mechanism for inhibition of ketogenesis through HMGCS2.


Journal of Biological Chemistry | 2009

Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control.

Robert C. Noland; Timothy R. Koves; Sarah E. Seiler; Helen Lum; Robert M. Lust; Olga Ilkayeva; Robert D. Stevens; Fausto G. Hegardt; Deborah M. Muoio

In addition to its essential role in permitting mitochondrial import and oxidation of long chain fatty acids, carnitine also functions as an acyl group acceptor that facilitates mitochondrial export of excess carbons in the form of acylcarnitines. Recent evidence suggests carnitine requirements increase under conditions of sustained metabolic stress. Accordingly, we hypothesized that carnitine insufficiency might contribute to mitochondrial dysfunction and obesity-related impairments in glucose tolerance. Consistent with this prediction whole body carnitine dimunition was identified as a common feature of insulin-resistant states such as advanced age, genetic diabetes, and diet-induced obesity. In rodents fed a lifelong (12 month) high fat diet, compromised carnitine status corresponded with increased skeletal muscle accumulation of acylcarnitine esters and diminished hepatic expression of carnitine biosynthetic genes. Diminished carnitine reserves in muscle of obese rats was accompanied by marked perturbations in mitochondrial fuel metabolism, including low rates of complete fatty acid oxidation, elevated incomplete β-oxidation, and impaired substrate switching from fatty acid to pyruvate. These mitochondrial abnormalities were reversed by 8 weeks of oral carnitine supplementation, in concert with increased tissue efflux and urinary excretion of acetylcarnitine and improvement of whole body glucose tolerance. Acetylcarnitine is produced by the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT). A role for this enzyme in combating glucose intolerance was further supported by the finding that CrAT overexpression in primary human skeletal myocytes increased glucose uptake and attenuated lipid-induced suppression of glucose oxidation. These results implicate carnitine insufficiency and reduced CrAT activity as reversible components of the metabolic syndrome.

Collaboration


Dive into the Olga Ilkayeva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge