Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristen Lee is active.

Publication


Featured researches published by Kristen Lee.


Science | 2012

Systematic Localization of Common Disease-Associated Variation in Regulatory DNA

Matthew T. Maurano; Richard Humbert; Eric Rynes; Robert E. Thurman; Eric Haugen; Hao Wang; Alex Reynolds; Richard Sandstrom; Hongzhu Qu; Jennifer A. Brody; Anthony Shafer; Fidencio Neri; Kristen Lee; Tanya Kutyavin; Sandra Stehling-Sun; Audra K. Johnson; Theresa K. Canfield; Erika Giste; Morgan Diegel; Daniel Bates; R. Scott Hansen; Shane Neph; Peter J. Sabo; Shelly Heimfeld; Antony Raubitschek; Steven F. Ziegler; Chris Cotsapas; Nona Sotoodehnia; Ian A. Glass; Shamil R. Sunyaev

Predictions of Genetic Disease Many genome-wide association studies (GWAS) have identified loci and variants associated with disease, but the ability to predict disease on the basis of these genetic variants remains small. Maurano et al. (p. 1190; see the Perspective by Schadt and Chang; see the cover) characterize the location of GWAS variants in the genome with respect to their proximity to regulatory DNA [marked by deoxyribonuclease I (DNase I) hypersensitive sites] by tissue type, disease, and enrichments in physiologically relevant transcription factor binding sites and networks. They found many noncoding disease associations in regulatory DNA, indicating tissue and developmental-specific regulatory roles for many common genetic variants and thus enabling links to be made between gene regulation and adult-onset disease. Genetic variants that have been associated with diseases are concentrated in regulatory regions of the genome. Genome-wide association studies have identified many noncoding variants associated with common diseases and traits. We show that these variants are concentrated in regulatory DNA marked by deoxyribonuclease I (DNase I) hypersensitive sites (DHSs). Eighty-eight percent of such DHSs are active during fetal development and are enriched in variants associated with gestational exposure–related phenotypes. We identified distant gene targets for hundreds of variant-containing DHSs that may explain phenotype associations. Disease-associated variants systematically perturb transcription factor recognition sequences, frequently alter allelic chromatin states, and form regulatory networks. We also demonstrated tissue-selective enrichment of more weakly disease-associated variants within DHSs and the de novo identification of pathogenic cell types for Crohn’s disease, multiple sclerosis, and an electrocardiogram trait, without prior knowledge of physiological mechanisms. Our results suggest pervasive involvement of regulatory DNA variation in common human disease and provide pathogenic insights into diverse disorders.


Nature | 2012

The accessible chromatin landscape of the human genome.

Robert E. Thurman; Eric Rynes; Richard Humbert; Jeff Vierstra; Matthew T. Maurano; Eric Haugen; Nathan C. Sheffield; Andrew B. Stergachis; Hao Wang; Benjamin Vernot; Kavita Garg; Sam John; Richard Sandstrom; Daniel Bates; Lisa Boatman; Theresa K. Canfield; Morgan Diegel; Douglas Dunn; Abigail K. Ebersol; Tristan Frum; Erika Giste; Audra K. Johnson; Ericka M. Johnson; Tanya Kutyavin; Bryan R. Lajoie; Bum Kyu Lee; Kristen Lee; Darin London; Dimitra Lotakis; Shane Neph

DNase I hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify ∼2.9 million DHSs that encompass virtually all known experimentally validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns. We connect ∼580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is organized with dozens to hundreds of co-activated elements, and the transcellular DNase I sensitivity pattern at a given region can predict cell-type-specific functional behaviours. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation.


Nature | 2012

An expansive human regulatory lexicon encoded in transcription factor footprints

Shane Neph; Jeff Vierstra; Andrew B. Stergachis; Alex Reynolds; Eric Haugen; Benjamin Vernot; Robert E. Thurman; Sam John; Richard Sandstrom; Audra K. Johnson; Matthew T. Maurano; Richard Humbert; Eric Rynes; Hao Wang; Shinny Vong; Kristen Lee; Daniel Bates; Morgan Diegel; Vaughn Roach; Douglas Dunn; Jun Neri; Anthony Schafer; R. Scott Hansen; Tanya Kutyavin; Erika Giste; Molly Weaver; Theresa K. Canfield; Peter J. Sabo; Miaohua Zhang; Gayathri Balasundaram

Regulatory factor binding to genomic DNA protects the underlying sequence from cleavage by DNase I, leaving nucleotide-resolution footprints. Using genomic DNase I footprinting across 41 diverse cell and tissue types, we detected 45 million transcription factor occupancy events within regulatory regions, representing differential binding to 8.4 million distinct short sequence elements. Here we show that this small genomic sequence compartment, roughly twice the size of the exome, encodes an expansive repertoire of conserved recognition sequences for DNA-binding proteins that nearly doubles the size of the human cis–regulatory lexicon. We find that genetic variants affecting allelic chromatin states are concentrated in footprints, and that these elements are preferentially sheltered from DNA methylation. High-resolution DNase I cleavage patterns mirror nucleotide-level evolutionary conservation and track the crystallographic topography of protein–DNA interfaces, indicating that transcription factor structure has been evolutionarily imprinted on the human genome sequence. We identify a stereotyped 50-base-pair footprint that precisely defines the site of transcript origination within thousands of human promoters. Finally, we describe a large collection of novel regulatory factor recognition motifs that are highly conserved in both sequence and function, and exhibit cell-selective occupancy patterns that closely parallel major regulators of development, differentiation and pluripotency.


Genome Research | 2012

Widespread plasticity in CTCF occupancy linked to DNA methylation.

Hao Wang; Matthew T. Maurano; Hongzhu Qu; Katherine E. Varley; Jason Gertz; Florencia Pauli; Kristen Lee; Theresa K. Canfield; Molly Weaver; Richard Sandstrom; Robert E. Thurman; Rajinder Kaul; Richard M. Myers; John A. Stamatoyannopoulos

CTCF is a ubiquitously expressed regulator of fundamental genomic processes including transcription, intra- and interchromosomal interactions, and chromatin structure. Because of its critical role in genome function, CTCF binding patterns have long been assumed to be largely invariant across different cellular environments. Here we analyze genome-wide occupancy patterns of CTCF by ChIP-seq in 19 diverse human cell types, including normal primary cells and immortal lines. We observed highly reproducible yet surprisingly plastic genomic binding landscapes, indicative of strong cell-selective regulation of CTCF occupancy. Comparison with massively parallel bisulfite sequencing data indicates that 41% of variable CTCF binding is linked to differential DNA methylation, concentrated at two critical positions within the CTCF recognition sequence. Unexpectedly, CTCF binding patterns were markedly different in normal versus immortal cells, with the latter showing widespread disruption of CTCF binding associated with increased methylation. Strikingly, this disruption is accompanied by up-regulation of CTCF expression, with the result that both normal and immortal cells maintain the same average number of CTCF occupancy sites genome-wide. These results reveal a tight linkage between DNA methylation and the global occupancy patterns of a major sequence-specific regulatory factor.


Nature | 2014

Conservation of trans-acting circuitry during mammalian regulatory evolution

Andrew B. Stergachis; Shane Neph; Richard Sandstrom; Eric Haugen; Alex Reynolds; Miaohua Zhang; Rachel Byron; Theresa K. Canfield; Sandra Stelhing-Sun; Kristen Lee; Robert E. Thurman; Shinny Vong; Daniel Bates; Fidencio Neri; Morgan Diegel; Erika Giste; Douglas Dunn; Jeff Vierstra; R. Scott Hansen; Audra K. Johnson; Peter J. Sabo; Matthew S. Wilken; Thomas A. Reh; Piper M. Treuting; Rajinder Kaul; Mark Groudine; Michael Bender; Elhanan Borenstein; John A. Stamatoyannopoulos

The basic body plan and major physiological axes have been highly conserved during mammalian evolution, yet only a small fraction of the human genome sequence appears to be subject to evolutionary constraint. To quantify cis- versus trans-acting contributions to mammalian regulatory evolution, we performed genomic DNase I footprinting of the mouse genome across 25 cell and tissue types, collectively defining ∼8.6 million transcription factor (TF) occupancy sites at nucleotide resolution. Here we show that mouse TF footprints conjointly encode a regulatory lexicon that is ∼95% similar with that derived from human TF footprints. However, only ∼20% of mouse TF footprints have human orthologues. Despite substantial turnover of the cis-regulatory landscape, nearly half of all pairwise regulatory interactions connecting mouse TF genes have been maintained in orthologous human cell types through evolutionary innovation of TF recognition sequences. Furthermore, the higher-level organization of mouse TF-to-TF connections into cellular network architectures is nearly identical with human. Our results indicate that evolutionary selection on mammalian gene regulation is targeted chiefly at the level of trans-regulatory circuitry, enabling and potentiating cis-regulatory plasticity.


Science | 2014

Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution

Jeff Vierstra; Eric Rynes; Richard Sandstrom; Miaohua Zhang; Theresa K. Canfield; R. Scott Hansen; Sandra Stehling-Sun; Peter J. Sabo; Rachel Byron; Richard Humbert; Robert E. Thurman; Audra K. Johnson; Shinny Vong; Kristen Lee; Daniel Bates; Fidencio Neri; Morgan Diegel; Erika Giste; Eric Haugen; Douglas Dunn; Matthew S. Wilken; Steven Z. Josefowicz; Robert M. Samstein; Kai Hsin Chang; Evan E. Eichler; Marella de Bruijn; Thomas A. Reh; Arthur I. Skoultchi; Alexander Y. Rudensky; Stuart H. Orkin

To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I–hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes. Mouse-to-human genomic comparisons illuminate conserved transcriptional programs despite regulatory rewiring. Rewiring the gene regulatory landscape DNAse I hypersensitive sites (DHSs) correlate with genomic locations that control where messenger RNA is to be produced. DHSs differ, depending on the cell type, developmental stage, and species. Viestra et al. compared mouse and human genome-wide DHS maps. Approximately one-third of the DHSs are conserved between the species, which separated approximately 550 million years ago. Most DHSs fell into tissue-specific cohorts; however, these were generally not conserved between the human and mouse. It seems that the majority of DHSs evolve because of changes in the sequence that gradually change how the region is regulated. Science, this issue p. 1007


Nature Methods | 2011

Rapid empirical discovery of optimal peptides for targeted proteomics

Andrew B. Stergachis; Brendan MacLean; Kristen Lee; John A. Stamatoyannopoulos; Michael J. MacCoss

We report a method for high-throughput, cost-efficient empirical discovery of optimal proteotypic peptides and fragment ions for targeted proteomics applications using in vitro–synthesized proteins. We demonstrate the approach using human transcription factors, which are typically difficult, low-abundance targets and empirically derived proteotypic peptides for 98% of the target proteins. We show that targeted proteomic assays developed using our approach facilitate robust in vivo quantification of human transcription factors.


Cell Reports | 2015

Role of DNA Methylation in Modulating Transcription Factor Occupancy

Matthew T. Maurano; Hao Wang; Sam John; Anthony Shafer; Theresa K. Canfield; Kristen Lee; John A. Stamatoyannopoulos

Although DNA methylation is commonly invoked as a mechanism for transcriptional repression, the extent to which it actively silences transcription factor (TF) occupancy sites in vivo is unknown. To study the role of DNA methylation in the active modulation of TF binding, we quantified the effect of DNA methylation depletion on the genomic occupancy patterns of CTCF, an abundant TF with known methylation sensitivity that is capable of autonomous binding to its target sites in chromatin. Here, we show that the vast majority (>98.5%) of the tens of thousands of unoccupied, methylated CTCF recognition sequences remain unbound upon abrogation of DNA methylation. The small fraction of sites that show methylation-dependent binding in vivo are in turn characterized by highly variable CTCF occupancy across cell types. Our results suggest that DNA methylation is not a primary groundskeeper of genomic TF landscapes, but rather a specialized mechanism for stabilizing intrinsically labile sites.


Current protocols in molecular biology | 2013

Genome‐Scale Mapping of DNase I Hypersensitivity

Sam John; Peter J. Sabo; Theresa K. Canfield; Kristen Lee; Shinny Vong; Molly Weaver; Hao Wang; Jeff Vierstra; Alex Reynolds; Robert E. Thurman; John A. Stamatoyannopoulos

DNase I-seq is a global and high-resolution method that uses the nonspecific endonuclease DNase I to map chromatin accessibility. These accessible regions, designated as DNase I hypersensitive sites (DHSs), define the regulatory features, (e.g., promoters, enhancers, insulators, and locus control regions) of complex genomes. In this unit, methods are described for nuclei isolation, digestion of nuclei with limiting concentrations of DNase I, and the biochemical fractionation of DNase I hypersensitive sites in preparation for high-throughput sequencing. DNase I-seq is an unbiased and robust method that is not predicated on an a priori understanding of regulatory patterns or chromatin features.


Nature Genetics | 2017

Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease

Barbara E. Stranger; Lori E. Brigham; Richard Hasz; Marcus Hunter; Christopher Johns; Mark C. Johnson; Gene Kopen; William F. Leinweber; John T. Lonsdale; Alisa McDonald; Bernadette Mestichelli; Kevin Myer; Brian Roe; Michael Salvatore; Saboor Shad; Jeffrey A. Thomas; Gary Walters; Michael Washington; Joseph Wheeler; Jason Bridge; Barbara A. Foster; Bryan M. Gillard; Ellen Karasik; Rachna Kumar; Mark Miklos; Michael T. Moser; Scott Jewell; Robert G. Montroy; Daniel C. Rohrer; Dana R. Valley

Genetic variants have been associated with myriad molecular phenotypes that provide new insight into the range of mechanisms underlying genetic traits and diseases. Identifying any particular genetic variants cascade of effects, from molecule to individual, requires assaying multiple layers of molecular complexity. We introduce the Enhancing GTEx (eGTEx) project that extends the GTEx project to combine gene expression with additional intermediate molecular measurements on the same tissues to provide a resource for studying how genetic differences cascade through molecular phenotypes to impact human health.

Collaboration


Dive into the Kristen Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Wang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morgan Diegel

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Bates

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Eric Haugen

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge