Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristen P. Tolson is active.

Publication


Featured researches published by Kristen P. Tolson.


Molecular Endocrinology | 2008

Oxytocin Deficiency Mediates Hyperphagic Obesity of Sim1 Haploinsufficient Mice

Bassil M. Kublaoui; Terry Gemelli; Kristen P. Tolson; Yu Wang; Andrew R. Zinn

Single-minded 1 (Sim1) encodes a transcription factor essential for formation of the hypothalamic paraventricular nucleus (PVN). Sim1 haploinsufficiency is associated with hyperphagic obesity and increased linear growth in humans and mice, similar to the phenotype of melanocortin 4 receptor (Mc4r) mutations. PVN neurons in Sim1(+/-) mice are hyporesponsive to the melanocortin agonist melanotan II. PVN neuropeptides oxytocin (Oxt), TRH and CRH inhibit feeding when administered centrally. Consequently, we hypothesized that altered PVN neuropeptide expression mediates the hyperphagia of Sim1(+/-) mice. To test this hypothesis, we measured hypothalamic expression of PVN neuropeptides in Sim1(+/-) and wild-type mice. Oxt mRNA and peptide were decreased by 80% in Sim1(+/-) mice, whereas TRH, CRH, arginine vasopressin (Avp), and somatostatin mRNAs were decreased by 20-40%. Sim1(+/-) mice also showed abnormal regulation of Oxt but not CRH mRNA in response to feeding state. A selective Mc4r agonist activated PVN Oxt neurons in wild-type mice, supporting involvement of these neurons in melanocortin feeding circuits. To test whether Oxt itself regulates feeding, we measured the effects of central administration of an Oxt receptor antagonist or repeated doses of Oxt on food intake of Sim1(+/-) and wild-type mice. Sim1(+/-) mice were hypersensitive to the orexigenic effect of the Oxt receptor antagonist. Oxt decreased the food intake and weight gain of Sim1(+/-) mice at a dose that did not affect wild-type mice. Our results support the importance of Oxt neurons in feeding regulation and suggest that reduced Oxt neuropeptide is one mechanism mediating the hyperphagic obesity of Sim1(+/-) mice.


The Journal of Neuroscience | 2010

Postnatal Sim1 Deficiency Causes Hyperphagic Obesity and Reduced Mc4r and Oxytocin Expression

Kristen P. Tolson; Terry Gemelli; Laurent Gautron; Joel K. Elmquist; Andrew R. Zinn; Bassil M. Kublaoui

Single-minded 1 (SIM1) mutations are one of the few known causes of nonsyndromic monogenic obesity in both humans and mice. Although the role of Sim1 in the formation of the hypothalamus has been described, its postdevelopmental, physiological functions have not been well established. Here we demonstrate that postnatal CNS deficiency of Sim1 is sufficient to cause hyperphagic obesity. We conditionally deleted Sim1 after birth using CaMKII-Cre (α-calcium/calmodulin-dependent protein kinase II-Cre) lines to recombine a floxed Sim1 allele. Conditional Sim1 heterozygotes phenocopied germ line Sim1 heterozygotes, displaying hyperphagic obesity and increased length. We also generated viable conditional Sim1 homozygotes, demonstrating that adult Sim1 expression is not essential for mouse or neuron survival and revealing a dosage-dependent effect of Sim1 on obesity. Using stereological cell counting, we showed that the phenotype of both germ line heterozygotes and conditional Sim1 homozygotes was not attributable to global hypocellularity of the paraventricular nucleus (PVN) of the hypothalamus. We also used retrograde tract tracing to demonstrate that the PVN of germ line heterozygous mice projects normally to the dorsal vagal complex and the median eminence. Finally, we showed that conditional Sim1 homozygotes and germ line Sim1 heterozygotes exhibit a remarkable decrease in hypothalamic oxytocin (Oxt) and PVN melanocortin 4 receptor (Mc4r) mRNA. These results demonstrate that the role of Sim1 in feeding regulation is not limited to formation of the PVN or its projections and that the hyperphagic obesity in Sim1-deficient mice may be attributable to changes in the leptin–melanocortin–oxytocin pathway.


Journal of Clinical Investigation | 2014

Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity

Kristen P. Tolson; Christian Garcia; Stephanie Yen; Stephanie E. Simonds; Aneta Stefanidis; Alison R Lawrence; Jeremy T. Smith; Alexander S. Kauffman

The neuropeptide kisspeptin regulates reproduction by stimulating gonadotropin-releasing hormone (GnRH) neurons via the kisspeptin receptor KISS1R. In addition to GnRH neurons, KISS1R is expressed in other brain areas and peripheral tissues, which suggests that kisspeptin has additional functions beyond reproduction. Here, we studied the energetic and metabolic phenotype in mice lacking kisspeptin signaling (Kiss1r KO mice). Compared with WT littermates, adult Kiss1r KO females displayed dramatically higher BW, leptin levels, and adiposity, along with strikingly impaired glucose tolerance. Conversely, male Kiss1r KO mice had normal BW and glucose regulation. Surprisingly, despite their obesity, Kiss1r KO females ate less than WT females; however, Kiss1r KO females displayed markedly reduced locomotor activity, respiratory rate, and energy expenditure, which were not due to impaired thyroid hormone secretion. The BW and metabolic phenotype in Kiss1r KO females was not solely reflective of absent gonadal estrogen, as chronically ovariectomized Kiss1r KO females developed obesity, hyperleptinemia, reduced metabolism, and glucose intolerance compared with ovariectomized WT females. Our findings demonstrate that in addition to reproduction, kisspeptin signaling influences BW, energy expenditure, and glucose homeostasis in a sexually dimorphic and partially sex steroid-independent manner; therefore, alterations in kisspeptin signaling might contribute, directly or indirectly, to some facets of human obesity, diabetes, or metabolic dysfunction.


Endocrinology | 2015

Absent progesterone signaling in kisspeptin neurons disrupts the LH surge and impairs fertility in female mice

Shannon B. Z. Stephens; Kristen P. Tolson; Melvin L. Rouse; Matthew C. Poling; Minako K. Hashimoto-Partyka; Pamela L. Mellon; Alexander S. Kauffman

Kisspeptin, encoded by Kiss1, stimulates GnRH neurons to govern reproduction. In rodents, estrogen-sensitive kisspeptin neurons in the anterior ventral periventricular nucleus and neighboring periventricular nucleus are thought to mediate sex steroid-induced positive feedback induction of the preovulatory LH surge. These kisspeptin neurons coexpress estrogen and progesterone receptors and display enhanced neuronal activation during the LH surge. However, although estrogen regulation of kisspeptin neurons has been well studied, the role of progesterone signaling in regulating kisspeptin neurons is unknown. Here we tested whether progesterone action specifically in kisspeptin cells is essential for proper LH surge and fertility. We used Cre-lox technology to generate transgenic mice lacking progesterone receptors exclusively in kisspeptin cells (termed KissPRKOs). Male KissPRKOs displayed normal fertility and gonadotropin levels. In stark contrast, female KissPRKOs displayed earlier puberty onset and significant impairments in fertility, evidenced by fewer births and substantially reduced litter size. KissPRKOs also had fewer ovarian corpora lutea, suggesting impaired ovulation. To ascertain whether this reflects a defect in the ability to generate sex steroid-induced LH surges, females were exposed to an estradiol-positive feedback paradigm. Unlike control females, which displayed robust LH surges, KissPRKO females did not generate notable LH surges and expressed significantly blunted cfos induction in anterior ventral periventricular nucleus kisspeptin neurons, indicating that progesterone receptor signaling in kisspeptin neurons is required for normal kisspeptin neuronal activation and LH surges during positive feedback. Our novel findings demonstrate that progesterone signaling specifically in kisspeptin cells is essential for the positive feedback induction of normal LH surges, ovulation, and normal fertility in females.


Biology of Reproduction | 2015

A Novel Letrozole Model Recapitulates Both the Reproductive and Metabolic Phenotypes of Polycystic Ovary Syndrome in Female Mice

Alexander S. Kauffman; Varykina G. Thackray; Genevieve E. Ryan; Kristen P. Tolson; Christine A. Glidewell-Kenney; Sheila J. Semaan; Matthew C. Poling; Nahoko Iwata; Kellie M. Breen; Antoni J. Duleba; Elisabet Stener-Victorin; Shunichi Shimasaki; Nicholas J. G. Webster; Pamela L. Mellon

ABSTRACT Polycystic ovary syndrome (PCOS) pathophysiology is poorly understood, due partly to lack of PCOS animal models fully recapitulating this complex disorder. Recently, a PCOS rat model using letrozole (LET), a nonsteroidal aromatase inhibitor, mimicked multiple PCOS phenotypes, including metabolic features absent in other models. Given the advantages of using genetic and transgenic mouse models, we investigated whether LET produces a similar PCOS phenotype in mice. Pubertal female C57BL/6N mice were treated for 5 wk with LET, which resulted in increased serum testosterone and normal diestrus levels of estradiol, similar to the hyperandrogenemia and follicular phase estrogen levels of PCOS women. As in PCOS, ovaries from LET mice were larger, polycystic, and lacked corpora lutea versus controls. Most LET females were acyclic, and all were infertile. LET females displayed elevated serum LH levels and higher Lhb mRNA in the pituitary. In contrast, serum FSH and Fshb were significantly reduced in LET females, demonstrating differential effects on gonadotropins, as in PCOS. Within the ovary, LET females had higher Cyp17, Cyp19, and Fsh receptor mRNA expression. In the hypothalamus, LET females had higher kisspeptin receptor mRNA expression but lower progesterone receptor mRNA levels. LET females also gained more weight than controls, had increased abdominal adiposity and adipocyte size, elevated adipose inflammatory mRNA levels, and impaired glucose tolerance, mirroring the metabolic phenotype in PCOS women. This is the first report of a LET paradigm in mice that recapitulates both reproductive and metabolic PCOS phenotypes and will be useful to genetically probe the PCOS condition.


Advances in Experimental Medicine and Biology | 2013

The Development of Kisspeptin Circuits in the Mammalian Brain

Sheila J. Semaan; Kristen P. Tolson; Alexander S. Kauffman

The neuropeptide kisspeptin, encoded by the Kiss1 gene, is required for mammalian puberty and fertility. Examining the development of the kisspeptin system contributes to our understanding of pubertal progression and adult reproduction and sheds light on possible mechanisms underlying the development of reproductive disorders, such as precocious puberty or hypogonadotropic hypogonadism. Recent work, primarily in rodent models, has begun to study the development of kisspeptin neurons and their regulation by sex steroids and other factors at early life stages. In the brain, kisspeptin is predominantly expressed in two areas of the hypothalamus, the anteroventral periventricular nucleus and neighboring periventricular nucleus (pre-optic area in some species) and the arcuate nucleus. Kisspeptin neurons in these two hypothalamic regions are differentially regulated by testosterone and estradiol, both in development and in adulthood, and also display differences in their degree of sexual dimorphism. In this chapter, we discuss what is currently known and not known about the ontogeny, maturation, and sexual differentiation of kisspeptin neurons, as well as their regulation by sex steroids and other factors during development.


Neuroscience | 2010

Distribution and neurochemical characterization of protein kinase C-theta and -delta in the rodent hypothalamus

B. G. Irani; Jose Donato; David P. Olson; Bradford B. Lowell; T. C. Sacktor; M. E. Reyland; Kristen P. Tolson; Andrew R. Zinn; Y. Ueta; Ichiro Sakata; Jeffrey M. Zigman; Carol F. Elias; Deborah J. Clegg

PKC-theta (PKC-θ), a member of the novel protein kinase C family (nPKC), regulates a wide variety of functions in the periphery. However, its presence and role in the CNS has remained largely unknown. Recently, we demonstrated the presence of PKC-θ in the arcuate hypothalamic nucleus (ARC) and knockdown of PKC-θ from the ARC protected mice from developing diet-induced obesity. Another isoform of the nPKC group, PKC-delta (PKC-δ), is expressed in several non-hypothalamic brain sites including the thalamus and hippocampus. Although PKC-δ has been implicated in regulating hypothalamic glucose homeostasis, its distribution in the hypothalamus has not previously been described. In the current study, we used immunohistochemistry to examine the distribution of PKC-θ and -δ immunoreactivity in rat and mouse hypothalamus. We found PKC-θ immunoreactive neurons in several hypothalamic nuclei including the ARC, lateral hypothalamic area, perifornical area and tuberomammillary nucleus. PKC-δ immunoreactive neurons were found in the paraventricular and supraoptic nuclei. Double-label immunohistochemisty in mice expressing green fluorescent protein either with the long form of leptin receptor (LepR-b) or in orexin (ORX) neurons indicated that PKC-θ is highly colocalized in lateral hypothalamic ORX neurons but not in lateral hypothalamic LepR-b neurons. Double-label immunohistochemistry in oxytocin-enhanced yellow fluorescent protein mice or arginine vasopressin-enhanced green fluorescent protein (AVP-EGFP) transgenic rats revealed a high degree of colocalization of PKC-δ within paraventricular and supraoptic oxytocin neurons but not the vasopressinergic neurons. We conclude that PKC-θ and -δ are expressed in different hypothalamic neuronal populations.


Endocrinology | 2013

Developmental GnRH Signaling Is Not Required for Sexual Differentiation of Kisspeptin Neurons but Is Needed for Maximal Kiss1 Gene Expression in Adult Females

Joshua Kim; Kristen P. Tolson; Sangeeta Dhamija; Alexander S. Kauffman

Kisspeptin, encoded by Kiss1, stimulates reproduction. In rodents, one Kiss1 population resides in the hypothalamic anterior ventral periventricular nucleus and neighboring rostral periventricular nucleus (AVPV/PeN). AVPV/PeN Kiss1 neurons are sexually dimorphic (greater in females), yet the mechanisms regulating their development and sexual differentiation remain poorly understood. Neonatal estradiol (E₂) normally defeminizes AVPV/PeN kisspeptin neurons, but emerging evidence suggests that developmental E₂ may also influence feminization of kisspeptin, although exactly when in development this process occurs is unknown. In addition, the obligatory role of GnRH signaling in governing sexual differentiation of Kiss1 or other sexually dimorphic traits remains untested. Here, we assessed whether AVPV/PeN Kiss1 expression is permanently impaired in adult hpg (no GnRH or E₂) or C57BL6 mice under different E₂ removal or replacement paradigms. We determined that 1) despite lacking GnRH signaling in development, marked sexual differentiation of Kiss1 still occurs in hpg mice; 2) adult hpg females, who lack lifetime GnRH and E₂ exposure, have reduced AVPV/PeN Kiss1 expression compared to wild-type females, even after chronic adulthood E₂ treatment; 3) E₂ exposure to hpg females during the pubertal period does not rescue their submaximal adult Kiss1 levels; and 4) in C57BL6 females, removal of ovarian E2 before the pubertal or juvenile periods does not impair feminization and maximal adult AVPV/PeN Kiss1 expression nor the ability to generate LH surges, indicating that puberty is not a critical period for Kiss1 development. Thus, sexual differentiation still occurs without GnRH, but GnRH or downstream E₂ signaling is needed sometime before juvenile development for complete feminization and maximal Kiss1 expression in adult females.


Endocrinology | 2014

Inducible neuronal inactivation of Sim1 in adult mice causes hyperphagic obesity.

Kristen P. Tolson; Terry Gemelli; Donna Meyer; Umar Yazdani; Julia Kozlitina; Andrew R. Zinn

Germline haploinsufficiency of human or mouse Sim1 is associated with hyperphagic obesity. Sim1 encodes a transcription factor required for proper formation of the paraventricular (PVN), supraoptic, and anterior periventricular hypothalamic nuclei. Sim1 expression persists in these neurons in adult mice, raising the question of whether it plays a physiologic role in regulation of energy balance. We previously showed that Sim1 heterozygous mice had normal numbers of PVN neurons that were hyporesponsive to melanocortin 4 receptor agonism and showed reduced oxytocin expression. Furthermore, conditional postnatal neuronal inactivation of Sim1 also caused hyperphagic obesity and decreased hypothalamic oxytocin expression. PVN projections to the hindbrain, where oxytocin is thought to act to modulate satiety, were anatomically intact in both Sim1 heterozygous and conditional knockout mice. These experiments provided evidence that Sim1 functions in energy balance apart from its role in hypothalamic development but did not rule out effects of Sim1 deficiency on postnatal hypothalamic maturation. To address this possibility, we used a tamoxifen-inducible, neural-specific Cre transgene to conditionally inactivate Sim1 in adult mice with mature hypothalamic circuitry. Induced Sim1 inactivation caused increased food and water intake and decreased expression of PVN neuropeptides, especially oxytocin and vasopressin, with no change in energy expenditure. Sim1 expression was not required for survival of PVN neurons. The results corroborate previous evidence that Sim1 acts physiologically as well as developmentally to regulate body weight. Inducible knockout mice provide a system for studying Sim1s physiologic function in energy balance and identifying its relevant transcriptional targets in the hypothalamus.


Journal of Neuroendocrinology | 2016

Unaltered Hypothalamic Metabolic Gene Expression in Kiss1r Knockout Mice Despite Obesity and Reduced Energy Expenditure.

Julie Ann P De Bond; Kristen P. Tolson; Chanond Nasamran; Alexander S. Kauffman; Jeremy T. Smith

Kisspeptin controls reproduction by stimulating gonadotrophin‐releasing hormone neurones via its receptor Kiss1r. Kiss1r is also expressed other brain areas and in peripheral tissues, suggesting additional nonreproductive roles. We recently determined that Kiss1r knockout (KO) mice develop an obese and diabetic phenotype. In the present study, we investigated whether Kiss1r KOs develop this metabolic phenotype as a result of alterations in the expression of metabolic genes involved in the appetite regulating system of the hypothalamus, including neuropeptide Y (Npy) and pro‐opiomelanocortin (Pomc), as well as leptin receptor (Lepr), ghrelin receptor (Ghsr), and melanocortin receptors 3 and 4 (Mc3r, Mc4r). Body weights, leptin levels and hypothalamic gene expression were measured in both gonad‐intact and gonadectomised (GNX) mice at 8 and 20 weeks of age that had received either normal chow or a high‐fat diet. We detected significant increases in Pomc expression in gonad‐intact Kiss1r KO mice at 8 and 20 weeks, although there were no alterations in the other metabolic‐related genes. However, the Pomc increases appeared to reflect genotype differences in circulating sex steroids, because GNX wild‐type and Kiss1r KO mice exhibited similar Pomc levels, along with similar Npy levels. The altered Pomc gene expression in gonad‐intact Kiss1r KO mice is consistent with previous reports of reduced food intake in these mice and may serve to increase the anorexigenic drive, perhaps compensating for the obese state. However, the surprising overall lack of changes in any of the hypothalamic metabolic genes in GNX KO mice suggests that the aetiology of obesity in the absence of kisspeptin signalling may reflect peripheral rather than central metabolic impairments.

Collaboration


Dive into the Kristen P. Tolson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew R. Zinn

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Terry Gemelli

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bassil M. Kublaoui

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge