Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheila J. Semaan is active.

Publication


Featured researches published by Sheila J. Semaan.


Endocrinology | 2011

Regulation of Kiss1 Expression by Sex Steroids in the Amygdala of the Rat and Mouse

Joshua Kim; Sheila J. Semaan; Donald K. Clifton; Robert A. Steiner; Sangeeta Dhamija; Alexander S. Kauffman

Kisspeptin (encoded by the Kiss1 gene) is an important regulator of reproduction. In rodents, Kiss1 is expressed in two hypothalamic regions, the arcuate nucleus and anteroventral periventricular/ periventricular continuum, where it is regulated by sex steroids. However, the distribution, regulation, and functional significance of neural kisspeptin outside of the hypothalamus have not been studied and are poorly understood. Here, we report the expression of Kiss1 in the amygdala, predominantly in the medial nucleus of the amygdala (MeA), a region implicated in social and emotional behaviors as well as various aspects of reproduction. In gonadally intact rats and mice, Kiss1-expressing neurons were identified in the MeA of both sexes, with higher Kiss1 expression levels in adult males than females in diestrus. In rats, Kiss1 expression in the MeA changed as a function of the estrous cycle, with highest levels at proestrus. Next, we tested whether Kiss1 in the MeA is regulated by the circulating sex steroid milieu. Kiss1 levels in the MeA were low in gonadectomized mice and rats of both sexes, and treatment with either testosterone or estradiol amplified Kiss1 expression in this region. Testosterones inductive effect on Kiss1 expression in the MeA likely occurs via estrogen receptor-dependent pathways, not through the androgen receptor, because dihydrotestosterone (a nonaromatizable androgen) did not affect MeA Kiss1 levels. Thus, in rodents, Kiss1 is expressed and regulated by sex steroids in the MeA of both sexes and may play a role in modulating reproduction or brain functions that extend beyond reproduction.


Endocrinology | 2010

BAX-Dependent and BAX-Independent Regulation of Kiss1 Neuron Development in Mice

Sheila J. Semaan; Elaine Murray; Matthew C. Poling; Sangeeta Dhamija; Nancy G. Forger; Alexander S. Kauffman

The Kiss1 gene and its product kisspeptin are important regulators of reproduction. In rodents, Kiss1 is expressed in the hypothalamic arcuate (ARC) and anteroventral periventricular (AVPV)/rostral periventricular (PeN) nuclei. In the AVPV/PeN, females have more Kiss1 and tyrosine hydroxylase (TH) neurons than males. We explored the ontogeny of the Kiss1 sex difference, and the role of cell death in establishing Kiss1 and TH cell number. We also determined whether Kiss1 cells in AVPV/PeN coexpress TH. AVPV/PeN Kiss1 neurons were first detected in both sexes on postnatal d 10, but the Kiss1 sex difference did not emerge until postnatal d 12. The role of BAX-mediated apoptosis in generating this sex difference was tested in adult Bax knockout (KO) and wild-type mice. Deletion of Bax did not diminish the sex difference in Kiss1 expression in the AVPV/PeN. TH expression was sexually dimorphic in the AVPV of both wild-type and Bax KO mice but, unlike Kiss1, was not sexually dimorphic in the PeN of either genotype. Double-label analysis determined that most Kiss1 neurons coexpress TH mRNA, but many TH neurons do not coexpress Kiss1, especially in the PeN. These findings suggest that several subpopulations of TH cells reside within the AVPV/PeN, only one of which coexpresses Kiss1. In the ARC, Kiss1 cell number was markedly increased in Bax KO mice of both sexes, indicating that although BAX-dependent apoptosis does not generate the sex difference in either Kiss1 or TH expression in AVPV/PeN, BAX does importantly regulate Kiss1 cell number in the ARC.


Current Opinion in Neurobiology | 2010

Sexual differentiation and development of forebrain reproductive circuits.

Sheila J. Semaan; Alexander S. Kauffman

Males and females exhibit numerous anatomical and physiological differences in the brain that often underlie important sex differences in physiology or behavior, including aspects relating to reproduction. Neural sex differences are both region-specific and trait-specific and may consist of divergences in synapse morphology, neuron size and number, and specific gene expression levels. In most cases, sex differences are induced by the sex steroid hormonal milieu during early perinatal development. In rodents, the hypothalamic anteroventral periventricular nucleus (AVPV) is sexually differentiated as a result of postnatal sex steroids, and also specific neuronal populations in this nucleus are sexually dimorphic, with females possessing more kisspeptin, dopaminergic, and GABA/glutamate neurons than males. The ability of female rodents, but not males, to display an estrogen-induced luteinizing hormone (LH) surge is consistent with the higher levels of these neuropeptides in the AVPV of females. Of these AVPV populations, the recently identified kisspeptin system has been most strongly implicated as a crucial component of the sexually dimorphic LH surge mechanism, though GABA and glutamate have also received some attention. New findings have suggested that the sexual differentiation and development of kisspeptin neurons in the AVPV is mediated by developmental estradiol signaling. Although apoptosis is the most common process implicated in neuronal sexual differentiation, it is currently unknown how developmental estradiol acts to differentiate specific neuronal populations in the AVPV, such as kisspeptin or dopaminergic neurons.


Endocrinology | 2012

Assessment of Epigenetic Contributions to Sexually-Dimorphic Kiss1 Expression in the Anteroventral Periventricular Nucleus of Mice

Sheila J. Semaan; Sangeeta Dhamija; Joshua Kim; Eric C. Ku; Alexander S. Kauffman

The Kiss1 gene, which encodes kisspeptin and is critical for reproduction, is sexually differentiated in the hypothalamic anteroventral periventricular (AVPV)/rostral periventricular (PeN) nuclei. Specifically, female rodents have higher AVPV/PeN Kiss1 expression than males, but how this Kiss1 sex difference is induced in early development is poorly understood. Here, we explored the contribution of epigenetic mechanisms to the establishment of the AVPV/PeN Kiss1 sex difference, focusing on histone deacetylation and DNA methylation. First, we utilized postnatal pharmacological blockade of histone deacetylation and analyzed Kiss1 expression in the AVPV/PeN. Postnatal disruption of histone deacetylase modestly increased AVPV Kiss1 cell number in both sexes but did not alter the Kiss1 sex difference. Next, we assessed whether the level of CpG methylation, which can influence transcription factor binding and gene expression, in the murine Kiss1 gene differs between males and females. We found significant sex differences in methylation at several CpG sites in the putative promoter and first intron of the Kiss1 gene in the AVPV/PeN, but not in the arcuate (which lacks adult Kiss1 sex differences), suggesting that differential methylation of the Kiss1 gene may influence sexually-dimorphic Kiss1 expression in the AVPV/PeN. Transgenic impairment of methyl CpG-binding protein-2 function did not eliminate the Kiss1 sex difference, indicating that other methylation factors are involved. Interestingly, CpG methylation in the AVPV/PeN was lower in males than females, suggesting that transcriptional repressors may contribute to the AVPV/PeN Kiss1 sex difference, a possibility supported by in silico identification of putative repressor binding sites near some of the sexually-dimorphic CpG.


Biology of Reproduction | 2015

A Novel Letrozole Model Recapitulates Both the Reproductive and Metabolic Phenotypes of Polycystic Ovary Syndrome in Female Mice

Alexander S. Kauffman; Varykina G. Thackray; Genevieve E. Ryan; Kristen P. Tolson; Christine A. Glidewell-Kenney; Sheila J. Semaan; Matthew C. Poling; Nahoko Iwata; Kellie M. Breen; Antoni J. Duleba; Elisabet Stener-Victorin; Shunichi Shimasaki; Nicholas J. G. Webster; Pamela L. Mellon

ABSTRACT Polycystic ovary syndrome (PCOS) pathophysiology is poorly understood, due partly to lack of PCOS animal models fully recapitulating this complex disorder. Recently, a PCOS rat model using letrozole (LET), a nonsteroidal aromatase inhibitor, mimicked multiple PCOS phenotypes, including metabolic features absent in other models. Given the advantages of using genetic and transgenic mouse models, we investigated whether LET produces a similar PCOS phenotype in mice. Pubertal female C57BL/6N mice were treated for 5 wk with LET, which resulted in increased serum testosterone and normal diestrus levels of estradiol, similar to the hyperandrogenemia and follicular phase estrogen levels of PCOS women. As in PCOS, ovaries from LET mice were larger, polycystic, and lacked corpora lutea versus controls. Most LET females were acyclic, and all were infertile. LET females displayed elevated serum LH levels and higher Lhb mRNA in the pituitary. In contrast, serum FSH and Fshb were significantly reduced in LET females, demonstrating differential effects on gonadotropins, as in PCOS. Within the ovary, LET females had higher Cyp17, Cyp19, and Fsh receptor mRNA expression. In the hypothalamus, LET females had higher kisspeptin receptor mRNA expression but lower progesterone receptor mRNA levels. LET females also gained more weight than controls, had increased abdominal adiposity and adipocyte size, elevated adipose inflammatory mRNA levels, and impaired glucose tolerance, mirroring the metabolic phenotype in PCOS women. This is the first report of a LET paradigm in mice that recapitulates both reproductive and metabolic PCOS phenotypes and will be useful to genetically probe the PCOS condition.


Molecular and Cellular Endocrinology | 2015

Daily successive changes in reproductive gene expression and neuronal activation in the brains of pubertal female mice

Sheila J. Semaan; Alexander S. Kauffman

Puberty is governed by the secretion of gonadotropin releasing hormone (GnRH), but the roles and identities of upstream neuropeptides that control and time puberty remain poorly understood. Indeed, how various reproductive neural gene systems change before and during puberty, and in relation to one another, is not well-characterized. We detailed the daily pubertal profile (from postnatal day [PND] 15 to PND 30) of neural Kiss1 (encoding kisspeptin), Kiss1r (kisspeptin receptor), Tac2 (neurokinin B), and Rfrp (RFRP-3, mammalian GnIH) gene expression and day-to-day c-fos induction in each of these cell types in developing female mice. Kiss1 expression in the AVPV/PeN increased substantially over the pubertal transition, reaching adult levels around vaginal opening (PND 27.5), a pubertal marker. However, AVPV/PeN Kiss1 neurons were not highly activated, as measured by c-fos co-expression, at any pubertal age. In the ARC, Kiss1 and Tac2 cell numbers showed moderate increases across the pubertal period, and neuronal activation of Tac2/Kiss1 cells was moderately elevated at all pubertal ages. Additionally, Kiss1r expression specifically in GnRH neurons was already maximal by PND 15 and did not change with puberty. Conversely, both Rfrp expression and Rfrp/c-fos co-expression in the DMN decreased markedly in the early pre-pubertal stage. This robust decrease of the inhibitory RFRP-3 population may diminish inhibition of GnRH neurons during early puberty. Collectively, our data identify the precise timing of important developmental changes - and in some cases, lack thereof - in gene expression and neuronal activation of key reproductive neuropeptides during puberty, with several changes occurring well before vaginal opening.


Endocrinology | 2014

Impaired GABAB Receptor Signaling Dramatically Up-Regulates Kiss1 Expression Selectively in Nonhypothalamic Brain Regions of Adult but Not Prepubertal Mice

Noelia P. Di Giorgio; Sheila J. Semaan; Joshua Kim; Paula V. López; Bernhard Bettler; Carlos Libertun; Victoria Lux-Lantos; Alexander S. Kauffman

Kisspeptin, encoded by Kiss1, stimulates reproduction and is synthesized in the hypothalamic anteroventral periventricular and arcuate nuclei. Kiss1 is also expressed at lower levels in the medial amygdala (MeA) and bed nucleus of the stria terminalis (BNST), but the regulation and function of Kiss1 there is poorly understood. γ-Aminobutyric acid (GABA) also regulates reproduction, and female GABAB1 receptor knockout (KO) mice have compromised fertility. However, the interaction between GABAB receptors and Kiss1 neurons is unknown. Here, using double-label in situ hybridization, we first demonstrated that a majority of hypothalamic Kiss1 neurons coexpress GABAB1 subunit, a finding also confirmed for most MeA Kiss1 neurons. Yet, despite known reproductive impairments in GABAB1KO mice, Kiss1 expression in the anteroventral periventricular and arcuate nuclei, assessed by both in situ hybridization and real-time PCR, was identical between adult wild-type and GABAB1KO mice. Surprisingly, however, Kiss1 levels in the BNST and MeA, as well as the lateral septum (a region normally lacking Kiss1 expression), were dramatically increased in both GABAB1KO males and females. The increased Kiss1 levels in extrahypothalamic regions were not caused by elevated sex steroids (which can increase Kiss1 expression), because circulating estradiol and testosterone were equivalent between genotypes. Interestingly, increased Kiss1 expression was not detected in the MeA or BNST in prepubertal KO mice of either sex, indicating that the enhancements in extrahypothalamic Kiss1 levels initiate during/after puberty. These findings suggest that GABAB signaling may normally directly or indirectly inhibit Kiss1 expression, particularly in the BNST and MeA, and highlight the importance of studying kisspeptin populations outside the hypothalamus.


Advances in Experimental Medicine and Biology | 2013

The Development of Kisspeptin Circuits in the Mammalian Brain

Sheila J. Semaan; Kristen P. Tolson; Alexander S. Kauffman

The neuropeptide kisspeptin, encoded by the Kiss1 gene, is required for mammalian puberty and fertility. Examining the development of the kisspeptin system contributes to our understanding of pubertal progression and adult reproduction and sheds light on possible mechanisms underlying the development of reproductive disorders, such as precocious puberty or hypogonadotropic hypogonadism. Recent work, primarily in rodent models, has begun to study the development of kisspeptin neurons and their regulation by sex steroids and other factors at early life stages. In the brain, kisspeptin is predominantly expressed in two areas of the hypothalamus, the anteroventral periventricular nucleus and neighboring periventricular nucleus (pre-optic area in some species) and the arcuate nucleus. Kisspeptin neurons in these two hypothalamic regions are differentially regulated by testosterone and estradiol, both in development and in adulthood, and also display differences in their degree of sexual dimorphism. In this chapter, we discuss what is currently known and not known about the ontogeny, maturation, and sexual differentiation of kisspeptin neurons, as well as their regulation by sex steroids and other factors during development.


Neuroendocrinology | 2013

Lack of functional GABAB receptors alters Kiss1 , Gnrh1 and Gad1 mRNA expression in the medial basal hypothalamus at postnatal day 4.

Noelia P. Di Giorgio; Paolo N. Catalano; Paula V. López; Betina Gonzalez; Sheila J. Semaan; Gabriela C. López; Alexander S. Kauffman; Susana B. Rulli; Gustavo M. Somoza; Bernhard Bettler; Carlos Libertun; Victoria Lux-Lantos

Background/Aims: Adult mice lacking functional GABAB receptors (GABAB1KO) show altered Gnrh1 and Gad1 expressions in the preoptic area-anterior hypothalamus (POA-AH) and females display disruption of cyclicity and fertility. Here we addressed whether sexual differentiation of the brain and the proper wiring of the GnRH and kisspeptin systems were already disturbed in postnatal day 4 (PND4) GABAB1KO mice. Methods: PND4 wild-type (WT) and GABAB1KO mice of both sexes were sacrificed; tissues were collected to determine mRNA expression (qPCR), amino acids (HPLC), and hormones (RIA and/or IHC). Results: GnRH neuron number (IHC) did not differ among groups in olfactory bulbs or OVLT-POA. Gnrh1 mRNA (qPCR) in POA-AH was similar among groups. Gnrh1 mRNA in medial basal hypothalamus (MBH) was similar in WTs but was increased in GABAB1KO females compared to GABAB1KO males. Hypothalamic GnRH (RIA) was sexually different in WTs (males > females), but this sex difference was lost in GABAB1KOs; the same pattern was observed when analyzing only the MBH, but not in the POA-AH. Arcuate nucleus Kiss1 mRNA (micropunch-qPCR) was higher in WT females than in WT males and GABAB1KO females. Gad1 mRNA in MBH was increased in GABAB1KO females compared to GABAB1KO males. Serum LH and gonadal estradiol content were also increased in GABAB1KOs. Conclusion: We demonstrate that GABABRs participate in the sexual differentiation of the ARC/MBH, because sex differences in several reproductive genes, such as Gad1, Kiss1 and Gnrh1, are critically disturbed in GABAB1KO mice at PND4, probably altering the organization and development of neural circuits governing the reproductive axis.


International Journal of Developmental Neuroscience | 2013

Emerging concepts on the epigenetic and transcriptional regulation of the Kiss1 gene

Sheila J. Semaan; Alexander S. Kauffman

Kisspeptin and its receptor have been implicated as critical regulators of reproductive physiology, with humans and mice without functioning kisspeptin systems displaying severe pubertal and reproductive defects. Alterations in the expression of Kiss1 (the gene encoding kisspeptin) over development, along with differences in Kiss1 expression between the sexes in adulthood, may be critical for the maturation and functioning of the neuroendocrine reproductive system and could possibly contribute to pubertal progression, sex differences in luteinizing hormone secretion, and other facets of reproductive physiology. It is therefore essential to understand how Kiss1 gene expression develops and what possible regulatory mechanisms govern the modulation of its expression. A number of recent studies, primarily in rodent or cell line models, have focused on the contributions of epigenetic mechanisms to the regulation of Kiss1 gene expression; thus far, mechanisms such as DNA methylation, histone acetylation, and histone methylation have been investigated. This review discusses the most recent findings on the epigenetic control of Kiss1 expression in adulthood, the evidence for epigenetic factors affecting Kiss1 expression during puberty and development, and findings regarding the contribution of epigenetics to the sexually dimorphic expression of Kiss1 in the hypothalamus.

Collaboration


Dive into the Sheila J. Semaan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua Kim

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Libertun

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Noelia P. Di Giorgio

National Scientific and Technical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge