Kristian B. Laursen
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristian B. Laursen.
Journal of Cell Science | 2013
Vasundhra Kashyap; Kristian B. Laursen; Fabienne Brenet; Agnes Viale; Joseph M. Scandura; Lorraine J. Gudas
Summary We have utilized retinoic acid receptor &ggr; (gamma) knockout (RAR&ggr;−/−) embryonic stem (ES) cells as a model system to analyze RAR&ggr; mediated transcriptional regulation of stem cell differentiation. Most of the transcripts regulated by all-trans retinoic acid (RA) in ES cells are dependent upon functional RAR&ggr; signaling. Notably, many of these RA–RAR&ggr; target genes are implicated in retinoid uptake and metabolism. For instance, Lrat (lecithin:retinol acyltransferase), Stra6 (stimulated by retinoic acid 6), Crabp2 (cellular retinoic acid binding protein 2), and Cyp26a1 (cytochrome p450 26a1) transcripts are induced in wild type (WT), but not in RAR&ggr;−/− cells. Transcripts for the transcription factors Pbx1 (pre-B cell leukemia homeobox-1), Wt1 (Wilms tumor gene-1), and Meis1 (myeloid ecotropic viral integration site-1) increase upon RA treatment of WT, but not RAR&ggr;−/− cells. In contrast, Stra8, Dleu7, Leftb, Pitx2, and Cdx1 mRNAs are induced by RA even in the absence of RAR&ggr;. Mapping of the epigenetic signature of Meis1 revealed that RA induces a rapid increase in the H3K9/K14ac epigenetic mark at the proximal promoter and at two sites downstream of the transcription start site in WT, but not in RAR&ggr;−/− cells. Thus, RA-associated increases in H3K9/K14ac epigenetic marks require RAR&ggr; and are associated with increased Meis1 transcript levels, whereas H3K4me3 is present at the Meis1 proximal promoter even in the absence of RAR&ggr;. In contrast, at the Lrat proximal promoter primarily the H3K4me3 mark, and not the H3K9/K14ac mark, increases in response to RA, independently of the presence of RAR&ggr;. Our data show major epigenetic changes associated with addition of the RAR&ggr; agonist RA in ES cells.
Experimental Cell Research | 2013
Yannick D. Benoit; Mavee Witherspoon; Kristian B. Laursen; Amel Guezguez; Marco Beauséjour; Jean-François Beaulieu; Steven M. Lipkin; Lorraine J. Gudas
Colorectal cancer is among the leading causes of cancer death in the USA. The polycomb repressive complex 2 (PRC2), including core components SUZ12 and EZH2, represents a key epigenetic regulator of digestive epithelial cell physiology and was previously shown to promote deleterious effects in a number of human cancers, including colon. Using colon cancer stem cells (CCSC) isolated from human primary colorectal tumors, we demonstrate that SUZ12 knockdown and treatment with DZNep, one of the most potent EZH2 inhibitors, increase apoptosis levels, marked by decreased Akt phosphorylation, in CCSCs, while embryonic stem (ES) cell survival is not affected. Moreover, DZNep treatments lead to increased PTEN expression in these highly tumorigenic cells. Taken together, our findings suggest that pharmacological inhibition of PRC2 histone methyltransferase activity may constitute a new, epigenetic therapeutic strategy to target highly tumorigenic and metastatic colon cancer stem cells.
Journal of Cellular Physiology | 2013
Yannick D. Benoit; Kristian B. Laursen; Mavee Witherspoon; Steven M. Lipkin; Lorraine J. Gudas
Colorectal cancer is ranked among the top leading causes of cancer death in industrialized populations. Polycomb group proteins, including Suz12 and Ezh2, are epigenetic regulatory proteins that act as transcriptional repressors of many differentiation‐associated genes and are overexpressed in a large subset of colorectal cancers. Retinoic acid (RA) acts as a negative regulator of PcG actions in stem cells, but has shown limited therapeutic potential in some solid tumors, including colorectal cancer, in part because of retinoic acid receptor β silencing. Through treatment with RA, Suz12 shRNA knockdown, or Ezh2 pharmacological inhibition with 3‐deazaneplanocin A (DZNep), we increased TRAIL‐mediated apoptosis in human colorectal cancer cell lines. This increased apoptosis in human colon cancer cells after RA or DZNep treatment was associated with a ∼2.5‐fold increase in TNFRSF10B (DR5) transcript levels and a 42% reduction in the H3K27me3 epigenetic mark at the TNFRSF10B promoter after DZNep addition. Taken together, our findings indicate that pharmacological inhibition of Polycomb repressive complex 2 histone methyltransferase activity may constitute a new epigenetic therapeutic strategy to overcome RA non‐responsiveness in a subset of colorectal tumors by increasing TRAIL‐mediated apoptosis sensitivity. J. Cell. Physiol. 228: 764–772, 2013.
Nucleic Acids Research | 2013
Kristian B. Laursen; Nigel P. Mongan; Yong Zhuang; Mary M. Ng; Yannick D. Benoit; Lorraine J. Gudas
Polycomb proteins play key roles in mediating epigenetic modifications that occur during cell differentiation. The Polycomb repressive complex 2 (PRC2) mediates the tri-methylation of histone H3 lysine 27 (H3K27me3). In this study, we identify a distinguishing feature of two classes of PRC2 target genes, represented by the Nr2F1 (Coup-TF1) and the Hoxa5 gene, respectively. Both genes are transcriptionally activated by all-trans retinoic acid (RA) and display increased levels of the permissive H3K9/K14ac and tri-methylated histone H3 lysine 4 epigenetic marks in response to RA. However, while in response to RA the PRC2 and H3K27me3 marks are greatly decreased at the Hoxa5 promoter, these marks are initially increased at the Nr2F1 promoter. Functional depletion of the essential PRC2 protein Suz12 by short hairpin RNA (shRNA) technology enhanced the RA-associated transcription of Nr2F1, Nr2F2, Meis1, Sox9 and BMP2, but had no effect on the Hoxa5, Hoxa1, Cyp26a1, Cyp26b1 and RARβ2 transcript levels in wild-type embryonic stem cells. We propose that PRC2 recruitment attenuates the RA-associated transcriptional activation of a subset of genes. Such a mechanism would permit the fine-tuning of transcriptional networks during differentiation.
Cell Cycle | 2013
Andreas Hedblom; Kristian B. Laursen; Regina Miftakhova; Martuza Sarwar; Lola Anagnostaki; Anders Bredberg; Nigel P. Mongan; Lorraine J. Gudas; Jenny L. Persson
Alterations in cell cycle pathways and retinoic acid signaling are implicated in leukemogenesis. However, little is known about the roles of cyclin-dependent kinases (CDKs) in treatment response of leukemia. In this study, we observed that CDK1 expression was significantly higher in bone marrow from 42 patients with acute myeloid leukemia (AML) at recurrence than that at first diagnosis (p = 0.04). AML patients had higher level of nuclear CDK1 in their leukemic blasts tended to have poorer clinical outcome compared with those with lower levels. We showed that CDK1 function is required for all-trans retinoic acid (ATRA) to achieve the optimal effect in U-937 human leukemic cells. CDK1 modulates the levels of P27kip and AKT phosphorylation in response to ATRA treatment. Further, we show, for the first time, that RARγ in concert with ATRA regulates protein levels of CDK1 and its subcellular localization. The regulation of the subcellular content of CDK1 and RARγ by ATRA is an important process for achieving an effective response in treatment of leukemia. RARγ and CDK1 form a reciprocal regulatory circuit in the nucleus and influence the function and protein stability of each other and the level of P27kip protein. In addition, expression of wee1 kinase and Cdc25A/C phosphatases also coincide with CDK1 expression and its subcellular localization in response to ATRA treatment. Our study reveals a novel mechanism by which CDK1 and RARγ coordinate with ATRA to influence cell cycle progression and cellular differentiation.
Oncotarget | 2015
Emeli M. Nilsson; Kristian B. Laursen; Jonathan Whitchurch; Andrew McWilliam; Niels Ødum; Jenny L. Persson; David M. Heery; Lorraine J. Gudas; Nigel P. Mongan
Androgens and the androgen receptor (AR) play crucial roles in male development and the pathogenesis and progression of prostate cancer (PCa). The AR functions as a ligand dependent transcription factor which recruits multiple enzymatically distinct epigenetic coregulators to facilitate transcriptional regulation in response to androgens. Over-expression of AR coregulators is implicated in cancer. We have shown that over-expression of KDM1A, an AR coregulator, contributes to PCa recurrence by promoting VEGFA expression. However the mechanism(s) whereby AR coregulators are increased in PCa remain poorly understood. In this study we show that the microRNA hsa-miR-137 (miR137) tumor suppressor regulates expression of an extended network of transcriptional coregulators including KDM1A/LSD1/AOF1, KDM2A/JHDM1A/FBXL11, KDM4A/JMJD2A, KDM5B JARID1B/PLU1, KDM7A/JHDM1D/PHF8, MED1/TRAP220/DRIP205 and NCoA2/SRC2/TIF2. We show that expression of miR137 is increased by androgen in LnCaP androgen PCa responsive cells and that the miR137 locus is epigenetically silenced in androgen LnCaP:C4-2 and PC3 independent PCa cells. In addition, we found that restoration of miR137 expression down-regulates expression of VEGFA, an AR target gene, which suggests a role of miR137 loss also in cancer angiogenesis. Finally we show functional inhibition of miR137 function enhanced androgen induction of PSA/KLK3 expression. Our data indicate that miR137 functions as an androgen regulated suppressor of androgen signaling by modulating expression of an extended network of transcriptional coregulators. Therefore, we propose that epigenetic silencing of miR137 is an important event in promoting androgen signaling during prostate carcinogenesis and progression.
Journal of Molecular Biology | 2018
Cynthia M. Quintero; Kristian B. Laursen; Nigel P. Mongan; Minkui Luo; Lorraine J. Gudas
Activation of the retinoic acid (RA) signaling pathway is important for controlling embryonic stem cell differentiation and development. Modulation of this pathway occurs through the recruitment of different epigenetic regulators at the retinoic acid receptors (RARs) located at RA-responsive elements and/or RA-responsive regions of RA-regulated genes. Coactivator-associated arginine methyltransferase 1 (CARM1, PRMT4) is a protein arginine methyltransferase that also functions as a transcriptional coactivator. Previous studies highlight CARM1s importance in the differentiation of different cell types. We address CARM1 function during RA-induced differentiation of murine embryonic stem cells (mESCs) using shRNA lentiviral transduction and CRISPR/Cas9 technology to deplete CARM1 in mESCs. We identify CARM1 as a novel transcriptional coactivator required for the RA-associated decrease in Rex1 (Zfp42) and for the RA induction of a subset of RA-regulated genes, including CRABP2 and NR2F1 (Coup-TF1). Furthermore, CARM1 is required for mESCs to differentiate into extraembryonic endoderm in response to RA. We next characterize the epigenetic mechanisms that contribute to RA-induced transcriptional activation of CRABP2 and NR2F1 in mESCs and show for the first time that CARM1 is required for this activation. Collectively, our data demonstrate that CARM1 is required for transcriptional activation of a subset of RA target genes, and we uncover changes in the recruitment of Suz12 and the epigenetic H3K27me3 and H3K27ac marks at gene regulatory regions for CRABP2 and NR2F1 during RA-induced differentiation.
Journal of Biological Chemistry | 2018
Kristian B. Laursen; Lorraine J. Gudas
All-trans–retinoic acid (RA), a potent inducer of cellular differentiation, functions as a ligand for retinoic acid receptors (RARα, β, and γ). RARs are activated by ligand binding, which induces transcription of direct genomic targets. However, whether embryonic stem cells respond to RA through routes that do not involve RARs is unknown. Here, we used CRISPR technology to introduce biallelic frameshift mutations in RARα, RARβ, and RARγ, thereby abrogating all RAR functions in murine embryonic stem cells. We then evaluated RA-responsiveness of the RAR-null cells using RNA-Seq transcriptome analysis. We found that the RAR-null cells display no changes in transcripts in response to RA, demonstrating that the RARs are essential for the regulation of all transcripts in murine embryonic stem cells in response to RA. Our key finding, that in embryonic stem cells the transcriptional effects of RA all depend on RARs, addresses a long-standing topic of discussion in the field of retinoic acid signaling.
Sub-cellular biochemistry | 2014
Alison M. Urvalek; Kristian B. Laursen; Lorraine J. Gudas
Journal of Investigative Dermatology | 2014
Kristian B. Laursen; Lorraine J. Gudas