Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristian Finlator is active.

Publication


Featured researches published by Kristian Finlator.


The Astronomical Journal | 2001

Solar System Objects Observed in the Sloan Digital Sky Survey Commissioning Data

Željko Ivezić; Serge Tabachnik; Roman R. Rafikov; Robert H. Lupton; Thomas P. Quinn; Mark Hammergren; Laurent Eyer; Jennifer Chu; John C. Armstrong; Xiaohui Fan; Kristian Finlator; T. R. Geballe; James E. Gunn; Gregory S. Hennessy; Gillian R. Knapp; S. K. Leggett; Jeffrey A. Munn; Jeffrey R. Pier; Constance M. Rockosi; Donald P. Schneider; Michael A. Strauss; Brian Yanny; Jonathan Brinkmann; István Csabai; Robert B. Hindsley; Stephen M. Kent; D. Q. Lamb; Bruce Margon; Timothy A. McKay; Patrick Waddel

We discuss measurements of the properties of D13,000 asteroids detected in 500 deg2 of sky in the Sloan Digital Sky Survey (SDSS) commissioning data. The moving objects are detected in the magnitude range 14 \ r* \ 21.5, with a baseline of D5 minutes, resulting in typical velocity errors of D3%. Extensive tests show that the sample is at least 98% complete, with a contamination rate of less than 3%. We —nd that the size distribution of asteroids resembles a broken power law, independent of the heliocentric distance: D~2.3 for 0.4 km, and D~4 for 5


Monthly Notices of the Royal Astronomical Society | 2011

An Analytic Model for the Evolution of the Stellar, Gas, and Metal Content of Galaxies

Romeel Davé; Kristian Finlator; Benjamin D. Oppenheimer

We present an analytic formalism that describes the evolution of the stellar, gas and metal content of galaxies. It is based on the idea, inspired by hydrodynamic simulations, that galaxies live in a slowly evolving equilibrium between inflow, outflow and star formation. We argue that this formalism broadly captures the behaviour of galaxy properties evolving in simulations. The resulting equilibrium equations for the star formation rate, gas fraction and metallicity depend on three key free parameters that represent ejective feedback, preventive feedback and reaccretion of ejected material. We schematically describe how these parameters are constrained by models and observations. Galaxies perturbed off the equilibrium relations owing to inflow stochasticity tend to be driven back towards equilibrium, such that deviations in star formation rate at a given mass are correlated with gas fraction and anticorrelated with metallicity. After an early gas accumulation epoch, quiescently star-forming galaxies are expected to be in equilibrium over most of cosmic time. The equilibrium model provides a simple intuitive framework for understanding the cosmic evolution of galaxy properties, and centrally features the cycle of baryons between galaxies and surrounding gas as the driver of galaxy growth.


The Astronomical Journal | 2002

OPTICAL AND RADIO PROPERTIES OF EXTRAGALACTIC SOURCES OBSERVED BY THE FIRST SURVEY AND THE SLOAN DIGITAL SKY SURVEY

Željko Ivezić; Kristen Menou; Gillian R. Knapp; Michael A. Strauss; Robert H. Lupton; Daniel E. Vanden Berk; Gordon T. Richards; Christy A. Tremonti; Michael A. Weinstein; Scott F. Anderson; Neta A. Bahcall; Robert H. Becker; Mariangela Bernardi; Michael R. Blanton; Daniel J. Eisenstein; Xiaohui Fan; Douglas P. Finkbeiner; Kristian Finlator; Joshua A. Frieman; James E. Gunn; Patrick B. Hall; Rita S. J. Kim; Ali Kinkhabwala; Vijay K. Narayanan; Constance M. Rockosi; David J. Schlegel; Donald P. Schneider; Iskra V. Strateva; Mark SubbaRao; Aniruddha R. Thakar

We discuss the optical and radio properties of ~30,000 FIRST (radio, 20 cm, sensitive to 1 mJy) sources positionally associated within 15 with a Sloan Digital Sky Survey (SDSS) (optical, sensitive to r* ~ 22.2) source in 1230 deg2 of sky. The matched sample represents ~30% of the 108,000 FIRST sources and 0.1% of the 2.5 ? 107 SDSS sources in the studied region. SDSS spectra are available for 4300 galaxies and 1154 quasars from the matched sample and for a control sample of 140,000 galaxies and 20,000 quasars in 1030 deg2 of sky. Here we analyze only core sources, which dominate the sample; the fraction of SDSS-FIRST sources with complex radio morphology is determined to be less than 10%. This large and unbiased catalog of optical identifications provides much firmer statistical footing for existing results and allows several new findings. The majority (83%) of the FIRST sources identified with an SDSS source brighter than r* = 21 are optically resolved; the fraction of resolved objects among the matched sources is a function of the radio flux, increasing from ~50% at the bright end to ~90% at the FIRST faint limit. Nearly all optically unresolved radio sources have nonstellar colors indicative of quasars. We estimate an upper limit of ~5% for the fraction of quasars with broadband optical colors indistinguishable from those of stars. The distribution of quasars in the radio flux?optical flux plane suggests the existence of the quasar radio dichotomy; 8% ? 1% of all quasars with i* 2.22) galaxies, especially those with r* > 17.5. Magnitude- and redshift-limited samples show that radio galaxies have a different optical luminosity distribution than nonradio galaxies selected by the same criteria; when galaxies are further separated by their colors, this result remains valid for both blue and red galaxies. For a given optical luminosity and redshift, the observed optical colors of radio galaxies are indistinguishable from those of all SDSS galaxies selected by identical criteria. The distributions of radio-to-optical flux ratio are similar for blue and red galaxies in redshift-limited samples; this similarity implies that the difference in their luminosity functions and resulting selection effects are the dominant cause for the preponderance of red radio galaxies in flux-limited samples. The fraction of radio galaxies whose emission-line ratios indicate an AGN (30%), rather than starburst, origin is 6 times larger than the corresponding fraction for all SDSS galaxies (r* < 17.5). We confirm that the AGN-to-starburst galaxy number ratio increases with radio flux and find that radio emission from AGNs is more concentrated than radio emission from starburst galaxies.


Monthly Notices of the Royal Astronomical Society | 2011

Galaxy evolution in cosmological simulations with outflows – II. Metallicities and gas fractions

Romeel Davé; Kristian Finlator; Benjamin D. Oppenheimer

We use cosmological hydrodynamic simulations to investigate how inflows, star formation, and outflows govern the the gaseous and metal content of galaxies within a hierarchical structure formation context. In our simulations, galaxy metallicities are established by a balance between inflows and outflows as governed by the mass outflow rate, implying that the mass-metallicity relation reflects how the outflow rate varies with stellar mass. Gas content, meanwhile, is set by a competition between inflow into and gas consumption within the interstellar medium, the latter being governed by the star formation law, while the former is impacted by both wind recycling and preventive feedback. Stochastic variations in the inflow rate move galaxies off the equilibrium mass-metallicity and mass-gas fraction relations in a manner correlated with star formation rate, and the scatter is set by the timescale to re-equilibrate. The evolution of both relations from z = 3 ! 0 is slow, as individual galaxies tend to evolve mostly along the relations. Gas fractions at a given stellar mass slowly decrease with time because the cosmic inflow rate diminishes faster than the consumption rate, while metallicities slowly increase as infalling gas becomes more enriched. Observations from z � 3 ! 0 are better matched by simulations employing momentum-driven wind scalings rather than constant wind speeds, but all models predict too low gas fractions at low masses and too high metallicities at high masses. All our models reproduce observed second-parameter trends of the mass-metallicity relation with star formation rate and environment, indicating that these are a consequence of equilibrium and not feedback. Overall, the analytical framework of our equilibrium scenario broadly captures the relevant physics establishing the galaxy gas and metal content in simulations, which suggests that the cycle of baryonic inflows and outflows centrally governs the cosmic evolution of these properties in typical star-forming galaxies.


Monthly Notices of the Royal Astronomical Society | 2011

Galaxy Evolution in Cosmological Simulations With Outflows I: Stellar Masses and Star Formation Rates

Romeel Davé; Benjamin D. Oppenheimer; Kristian Finlator

We examine the growth of the stellar content of galaxies from z = 3 → 0 in cosmological hydrodynamic simulations incorporating parametrized galactic outflows. Without outflows, galaxies overproduce stellar masses (M * ) and star formation rates (SFRs) compared to observations. Winds introduce a three-tier form for the galaxy stellar mass and star formation rate functions, where the middle tier depends on the differential (i.e. mass-dependent) recycling of ejected wind material back into galaxies. A tight M * ―SFR relation is a generic outcome of all these simulations and its evolution is well described as being powered by cold accretion, although current observations at z ≳ 2 suggest that the star formation in small early galaxies must be highly suppressed. Roughly, one-third of z = 0 galaxies at masses below M * are satellites and the star formation in satellites is not much burstier than in centrals. All models fail to suppress the star formation and stellar mass growth in massive galaxies at z ≲ 2, indicating the need for an external quenching mechanism such as black hole feedback. All models also fail to produce dwarfs as young and rapidly star forming as observed. An outflow model following scalings expected for momentum-driven winds broadly matches the observed galaxy evolution around M * from z = 0 to 3, which is a significant success since these galaxies dominate cosmic star formation, but the failures at higher and lower masses highlight the challenges still faced by this class of models. We argue that central star-forming galaxies are well described as living in a slowly evolving equilibrium between inflows from gravity and recycled winds, star formation, and strong and ubiquitous outflows that regulate how much inflow forms into stars. Star-forming galaxy evolution is thus primarily governed by the continual cycling of baryons between galaxies and intergalactic gas.


The Astrophysical Journal | 2012

CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4

Steven L. Finkelstein; Casey Papovich; Brett Salmon; Kristian Finlator; Mark Dickinson; Henry C. Ferguson; Mauro Giavalisco; Anton M. Koekemoer; Naveen A. Reddy; Robert Bassett; Christopher J. Conselice; James Dunlop; S. M. Faber; Norman A. Grogin; Nimish P. Hathi; Dale D. Kocevski; Kamson Lai; Kyoung-Soo Lee; Ross J. McLure; Bahram Mobasher; Jeffrey A. Newman

We study the evolution of galaxy rest-frame ultraviolet (UV) colors in the epoch 4 z 8. We use new wide-field near-infrared data in the Great Observatories Origins Deep Survey-South field from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, Hubble Ultra Deep Field (HUDF) 2009, and Early Release Science programs to select galaxies via photometric redshift measurements. Our sample consists of 2812 candidate galaxies at z 3.5, including 113 at z 7-8. We fit the observed spectral energy distribution to a suite of synthetic stellar population models and measure the value of the UV spectral slope (?) from the best-fit model spectrum. We run simulations to show that this measurement technique results in a smaller scatter on ? than other methods, as well as a reduced number of galaxies with catastrophically incorrect ? measurements (i.e., ?? > 1). We find that the median value of ? evolves significantly from ?1.82+0.00 ? 0.04 at z?= 4 to ?2.37+0.26 ? 0.06 at z?= 7. Additionally, we find that faint galaxies at z?= 7 have ? = ?2.68+0.39 ? 0.24 (~ ?2.4 after correcting for observational bias); this is redder than previous claims in the literature and does not require exotic stellar populations (e.g., very low metallicities or top-heavy initial mass functions) to explain their colors. This evolution can be explained by an increase in dust extinction, from low amounts at z?= 7 to A V ~ 0.5?mag at z?= 4. The timescale for this increase is consistent with low-mass asymptotic giant branch stars forming the bulk of the dust. We find no significant (<2?) correlation between ? and M UV when measuring M UV at a consistent rest-frame wavelength of 1500??. This is particularly true at bright magnitudes, though our results do show evidence for a weak correlation at faint magnitudes when galaxies in the HUDF are considered separately, hinting that dynamic range in sample luminosities may play a role. We do find a strong correlation between ? and the stellar mass at all redshifts, in that more massive galaxies exhibit redder colors. The most massive galaxies in our sample have similarly red colors at each redshift, implying that dust can build up quickly in massive galaxies and that feedback is likely removing dust from low-mass galaxies at z ? 7. Thus, the stellar-mass?metallicity relation, previously observed up to z ~ 3, may extend out to z?= 7-8.


The Astrophysical Journal | 2013

A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION

Tomas Dahlen; Bahram Mobasher; Sandra M. Faber; Henry C. Ferguson; Guillermo Barro; Steven L. Finkelstein; Kristian Finlator; A. Fontana; Ruth Gruetzbauch; Seth Johnson; Janine Pforr; M. Salvato; Tommy Wiklind; Stijn Wuyts; Viviana Acquaviva; Mark Dickinson; Yicheng Guo; Jia-Sheng Huang; Kuang-Han Huang; Jeffrey A. Newman; Eric F. Bell; Christopher J. Conselice; Audrey Galametz; Eric Gawiser; Mauro Giavalisco; Norman A. Grogin; Nimish P. Hathi; Dale D. Kocevski; Anton M. Koekemoer; David C. Koo

We present results from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) photometric redshift methods investigation. In this investigation, the results from 11 participants, each using a different combination of photometric redshift code, template spectral energy distributions (SEDs), and priors, are used to examine the properties of photometric redshifts applied to deep fields with broadband multi-wavelength coverage. The photometry used includes U-band through mid-infrared filters and was derived using the TFIT method. Comparing the results, we find that there is no particular code or set of template SEDs that results in significantly better photometric redshifts compared to others. However, we find that codes producing the lowest scatter and outlier fraction utilize a training sample to optimize photometric redshifts by adding zero-point offsets, template adjusting, or adding extra smoothing errors. These results therefore stress the importance of the training procedure. We find a strong dependence of the photometric redshift accuracy on the signal-to-noise ratio of the photometry. On the other hand, we find a weak dependence of the photometric redshift scatter with redshift and galaxy color. We find that most photometric redshift codes quote redshift errors (e.g., 68% confidence intervals) that are too small compared to that expected from the spectroscopic control sample. We find that all codes show a statistically significant bias in the photometric redshifts. However, the bias is in all cases smaller than the scatter; the latter therefore dominates the errors. Finally, we find that combining results from multiple codes significantly decreases the photometric redshift scatter and outlier fraction. We discuss different ways of combining data to produce accurate photometric redshifts and error estimates.


The Astronomical Journal | 2000

Candidate RR Lyrae stars found in Sloan Digital Sky Survey commissioning data

Željko Ivezić; Josh Goldston; Kristian Finlator; Gillian R. Knapp; Brian Yanny; Timothy A. McKay; Susan Amrose; Kevin Krisciunas; Beth Willman; Scott F. Anderson; Chris Schaber; Dawn K. Erb; Chelsea Logan; Christopher W. Stubbs; Bing Chen; Eric H. Neilsen; Alan Uomoto; Jeffrey R. Pier; Xiaohui Fan; James E. Gunn; Robert H. Lupton; Constance M. Rockosi; David J. Schlegel; Michael A. Strauss; James Annis; J. Brinkmann; István Csabai; Mamoru Doi; Masataka Fukugita; Gregory S. Hennessy

We present a sample of 148 candidate RR Lyrae stars selected from Sloan Digital Sky Survey (SDSS) commissioning data for about 100 deg2 of sky surveyed twice with ?t = 1.9946 days. Although the faint-magnitude limit of the SDSS allows us to detect RR Lyrae stars to large Galactocentric distances (~100 kpc, or r* ~ 21), we find no candidates fainter than r* ~ 20, i.e., farther than ~65 kpc from the Galactic center. On the assumption that all 148 candidates are indeed RR Lyrae stars (contamination by other species of variable star is probably less than 10%), we find that their volume density has roughly a power-law dependence on Galactocentric radius, R-2.7?0.2, between 10 and 50 kpc and drops abruptly at R ~ 50?60 kpc, possibly indicating a sharp edge to the stellar halo as traced by RR Lyrae stars. The Galactic distribution of stars in this sample is very inhomogeneous and shows a clump of over 70 stars at about 45 kpc from the Galactic center. This clump is also detected in the distribution of nonvariable objects with RR Lyrae star colors. When sources in the clump are excluded, the best power-law fit becomes consistent with the R-3 distribution found from surveys of bright RR Lyrae stars. These results imply that the halo contains clumpy overdensities inhomogeneously distributed within a smooth R-3 background, with a possible cutoff at ~50 kpc.


The Astrophysical Journal | 2013

SEDS: The Spitzer Extended Deep Survey: survey design, photometry, and deep IRAC source counts

M. L. N. Ashby; S. P. Willner; G. G. Fazio; Jia-Sheng Huang; Richard G. Arendt; Pauline Barmby; Guillermo Barro; Eric F. Bell; R. J. Bouwens; Andrea Cattaneo; Darren J. Croton; Romeel Davé; James Dunlop; E. Egami; S. M. Faber; Kristian Finlator; Norman A. Grogin; Puragra Guhathakurta; Lars Hernquist; Joseph L. Hora; G. D. Illingworth; A. Kashlinsky; Anton M. Koekemoer; David C. Koo; Ivo Labbé; Yuexing Li; Lihwai Lin; Harvey Moseley; Kirpal Nandra; J. A. Newman

The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg(2) to a depth of 26 AB mag (3s) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 mu m. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six- month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 +/- 1.0 and 4.4 +/- 0.8 nW m(-2) sr(-1) at 3.6 and 4.5 mu m to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.


Monthly Notices of the Royal Astronomical Society | 2012

A fundamental problem in our understanding of low‐mass galaxy evolution

Simone M. Weinmann; Anna Pasquali; Benjamin D. Oppenheimer; Kristian Finlator; J. Trevor Mendel; Robert A. Crain; Andrea V. Macciò

Recent studies have found a dramatic difference between the observed number density evolution of low-mass galaxies and that predicted by semi-analytic models. Whilst models accurately reproduce the z= 0 number density, they require that the evolution occurs rapidly at early times, which is incompatible with the strong late evolution found in observational results. We report here the same discrepancy in two state-of-the-art cosmological hydrodynamical simulations, which is evidence that the problem is fundamental. We search for the underlying cause of this problem using two complementary methods. First, we consider a narrow range in stellar mass of log (Mstar/(h−2M_)) = 9–9.5 and look for evidence of a different history of today’s low-mass galaxies in models and observations. We find that the exclusion of satellite galaxies from the analysis brings the median ages and star formation rates of galaxies into reasonable agreement. However, the models yield too few young, strongly star-forming galaxies. Secondly, we construct a toy model to link the observed evolution of specific star formation rates with the evolution of the galaxy stellar mass function. We infer from this model that a key problem in both semi-analytic and hydrodynamical models is the presence of a positive instead of a negative correlation between specific star formation rate and stellar mass. A similar positive correlation is found between the specific dark matter halo accretion rate and the halo mass, indicating that model galaxies are growing in a way that follows the growth of their host haloes too closely. It therefore appears necessary to find a mechanism that decouples the growth of low-mass galaxies, which occurs primarily at late times, from the growth of their host haloes, which occurs primarily at early times. We argue that the current form of star formation-driven feedback implemented in most galaxy formation models is unlikely to achieve this goal, owing to its fundamental dependence on host halo mass and time.

Collaboration


Dive into the Kristian Finlator's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin D. Oppenheimer

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Egami

University of Arizona

View shared research outputs
Top Co-Authors

Avatar

Steven L. Finkelstein

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Benjamin D. Oppenheimer

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Casey Papovich

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Henry C. Ferguson

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Anton M. Koekemoer

Space Telescope Science Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge