Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristian K. Ullrich is active.

Publication


Featured researches published by Kristian K. Ullrich.


Nature | 2012

A transcriptomic hourglass in plant embryogenesis

Marcel Quint; Hajk-Georg Drost; Alexander Gabel; Kristian K. Ullrich; Markus Bönn; Ivo Grosse

Animal and plant development starts with a constituting phase called embryogenesis, which evolved independently in both lineages. Comparative anatomy of vertebrate development—based on the Meckel-Serrès law and von Baer’s laws of embryology from the early nineteenth century—shows that embryos from various taxa appear different in early stages, converge to a similar form during mid-embryogenesis, and again diverge in later stages. This morphogenetic series is known as the embryonic ‘hourglass’, and its bottleneck of high conservation in mid-embryogenesis is referred to as the phylotypic stage. Recent analyses in zebrafish and Drosophila embryos provided convincing molecular support for the hourglass model, because during the phylotypic stage the transcriptome was dominated by ancient genes and global gene expression profiles were reported to be most conserved. Although extensively explored in animals, an embryonic hourglass has not been reported in plants, which represent the second major kingdom in the tree of life that evolved embryogenesis. Here we provide phylotranscriptomic evidence for a molecular embryonic hourglass in Arabidopsis thaliana, using two complementary approaches. This is particularly significant because the possible absence of an hourglass based on morphological features in plants suggests that morphological and molecular patterns might be uncoupled. Together with the reported developmental hourglass patterns in animals, these findings indicate convergent evolution of the molecular hourglass and a conserved logic of embryogenesis across kingdoms.


The Plant Cell | 2010

Natural Variation of Transcriptional Auxin Response Networks in Arabidopsis thaliana

Carolin Delker; Yvonne Pöschl; Anja Raschke; Kristian K. Ullrich; Stefan Ettingshausen; Valeska Hauptmann; Ivo Grosse; Marcel Quint

In this study, physiological, comparative transcriptomic, and network analysis approaches identify extensive natural variation of auxin responses among A. thaliana accessions. Expression level variation in auxin signaling genes is hypothesized to contribute to downstream variation in large auxin-regulated gene clusters. Natural variation has been observed for various traits in Arabidopsis thaliana. Here, we investigated natural variation in the context of physiological and transcriptional responses to the phytohormone auxin, a key regulator of plant development. A survey of the general extent of natural variation to auxin stimuli revealed significant physiological variation among 20 genetically diverse natural accessions. Moreover, we observed dramatic variation on the global transcriptome level after induction of auxin responses in seven accessions. Although we detect isolated cases of major-effect polymorphisms, sequencing of signaling genes revealed sequence conservation, making selective pressures that favor functionally different protein variants among accessions unlikely. However, coexpression analyses of a priori defined auxin signaling networks identified variations in the transcriptional equilibrium of signaling components. In agreement with this, cluster analyses of genome-wide expression profiles followed by analyses of a posteriori defined gene networks revealed accession-specific auxin responses. We hypothesize that quantitative distortions in the ratios of interacting signaling components contribute to the detected transcriptional variation, resulting in physiological variation of auxin responses among accessions.


Plant Physiology | 2011

Molecular Evolution and Selection Patterns of Plant F-Box Proteins with C-Terminal Kelch Repeats

Nadine Schumann; Aura Navarro-Quezada; Kristian K. Ullrich; Carsten Kuhl; Marcel Quint

The F-box protein superfamily represents one of the largest families in the plant kingdom. F-box proteins phylogenetically organize into numerous subfamilies characterized by their carboxyl (C)-terminal protein-protein interaction domain. Among the largest F-box protein subfamilies in plant genomes are those with C-terminal kelch repeats. In this study, we analyzed the phylogeny and evolution of F-box kelch proteins/genes (FBKs) in seven completely sequenced land plant genomes including a bryophyte, a lycophyte, monocots, and eudicots. While absent in prokaryotes, F-box kelch proteins are widespread in eukaryotes. Nonplant eukaryotes usually contain only a single FBK gene. In land plant genomes, however, FBKs expanded dramatically. Arabidopsis thaliana, for example, contains at least 103 F-box genes with well-conserved C-terminal kelch repeats. The construction of a phylogenetic tree based on the full-length amino acid sequences of the FBKs that we identified in the seven species enabled us to classify FBK genes into unstable/stable/superstable categories. In contrast to superstable genes, which are conserved across all seven species, kelch domains of unstable genes, which are defined as lineage specific, showed strong signatures of positive selection, indicating adaptational potential. We found evidence for conserved protein features such as binding affinities toward A. thaliana SKP1-like adaptor proteins and subcellular localization among closely related FBKs. Pseudogenization seems to occur only rarely, but differential transcriptional regulation of close relatives may result in subfunctionalization.


Ecology Letters | 2017

Ecological plant epigenetics: Evidence from model and non-model species, and the way forward

Christina L. Richards; Conchita Alonso; Claude Becker; Oliver Bossdorf; Etienne Bucher; Maria Colomé-Tatché; Walter Durka; Jan Engelhardt; Bence Gáspár; Andreas Gogol-Döring; Ivo Grosse; Thomas P. van Gurp; Katrin Heer; Ilkka Kronholm; Christian Lampei; Vít Latzel; Marie Mirouze; Lars Opgenoorth; Ovidiu Paun; Sonja J. Prohaska; Stefan A. Rensing; Peter F. Stadler; Emiliano Trucchi; Kristian K. Ullrich; Koen J. F. Verhoeven

Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.


Genome Biology and Evolution | 2015

Localization and Evolution of Putative Triose Phosphate Translocators in the Diatom Phaeodactylum tricornutum.

Daniel Moog; Stefan A. Rensing; John M. Archibald; Uwe G. Maier; Kristian K. Ullrich

Abstract The establishment of a metabolic connection between host and symbiont is a crucial step in the evolution of an obligate endosymbiotic relationship. Such was the case in the evolution of mitochondria and plastids. Whereas the mechanisms of metabolite shuttling between the plastid and host cytosol are relatively well studied in Archaeplastida—organisms that acquired photosynthesis through primary endosymbiosis—little is known about this process in organisms with complex plastids. Here, we focus on the presence, localization, and phylogeny of putative triose phosphate translocators (TPTs) in the complex plastid of diatoms. These proteins are thought to play an essential role in connecting endosymbiont and host metabolism via transport of carbohydrates generated by the photosynthesis machinery of the endosymbiont. We show that the complex plastid localized TPTs are monophyletic and present a model for how the initial metabolic link between host and endosymbiont might have been established in diatoms and other algae with complex red plastids and discuss its implications on the evolution of those lineages.


Frontiers in Plant Science | 2012

Toward a comprehensive phylogenetic reconstruction of the evolutionary history of mitogen-activated protein kinases in the plant kingdom.

Philipp Janitza; Kristian K. Ullrich; Marcel Quint

The mitogen-activated protein kinase (MAPK) pathway is a three-tier signaling cascade that transmits cellular information from the plasma membrane to the cytoplasm where it triggers downstream responses. The MAPKs represent the last step in this cascade and are activated when both tyrosine and threonine residues in a conserved TxY motif are phosphorylated by MAPK kinases, which in turn are themselves activated by phosphorylation by MAPK kinase kinases. To understand the molecular evolution of MAPKs in the plant kingdom, we systematically conducted a Hidden-Markov-Model based screen to identify MAPKs in 13 completely sequenced plant genomes. In this analysis, we included green algae, bryophytes, lycophytes, and several mono- and eudicotyledonous species covering >800 million years of evolution. The phylogenetic relationships of the 204 identified MAPKs based on Bayesian inference facilitated the retraction of the sequence of emergence of the four major clades that are characterized by the presence of a TDY or TEY-A/TEY-B/TEY-C type kinase activation loop. We present evidence that after the split of TDY- and TEY-type MAPKs, initially the TEY-C clade emerged. This was followed by the TEY-B clade in early land plants until the TEY-A clade finally emerged in flowering plants. In addition to these well characterized clades, we identified another highly conserved clade of 45 MAPK-likes, members of which were previously described as Mak-homologous kinases. In agreement with their essential functions, molecular population genetic analysis of MAPK genes in Arabidopsis thaliana accessions reveal that purifying selection drove the evolution of the MAPK family, implying strong functional constraints on MAPK genes. Closely related MAPKs most likely subfunctionalized, a process in which differential transcriptional regulation of duplicates may be involved.


BMC Plant Biology | 2014

Functional analysis of COP1 and SPA orthologs from Physcomitrella and rice during photomorphogenesis of transgenic Arabidopsis reveals distinct evolutionary conservation

Aashish Ranjan; Stephen Dickopf; Kristian K. Ullrich; Stefan A. Rensing; Ute Hoecker

BackgroundPlants have evolved light sensing mechanisms to optimally adapt their growth and development to the ambient light environment. The COP1/SPA complex is a key negative regulator of light signaling in the well-studied dicot Arabidopsis thaliana. COP1 and members of the four SPA proteins are part of an E3 ubiquitin ligase that acts in darkness to ubiquitinate several transcription factors involved in light responses, thereby targeting them for degradation by the proteasome. While COP1 is also found in humans, SPA proteins appear specific to plants. Here, we have functionally addressed evolutionary conservation of COP1 and SPA orthologs from the moss Physcomitrella, the monocot rice and the dicot Arabidopsis.ResultsTo this end, we analyzed the activities of COP1- and SPA-like proteins from Physcomitrella patens and rice when expressed in Arabidopsis. Expression of rice COP1 and Physcomitrella COP1 protein sequences predominantly complemented all phenotypic aspects of the viable, hypomorphic cop1-4 mutant and the null, seedling-lethal cop1-5 mutant of Arabidopsis: rice COP1 fully rescued the constitutive-photomorphogenesis phenotype in darkness and the leaf expansion defect of cop1 mutants, while it partially restored normal photoperiodic flowering in cop1. Physcomitrella COP1 partially restored normal seedling growth and flowering time, while it fully restored normal leaf expansion in the cop1 mutants. In contrast, expression of a SPA ortholog from Physcomitrella (PpSPAb) in Arabidopsis spa mutants did not rescue any facet of the spa mutant phenotype, suggesting that the PpSPAb protein is not functionally conserved or that the Arabidopsis function evolved after the split of mosses and seed plants. The SPA1 ortholog from rice (OsSPA1) rescued the spa mutant phenotype in dark-grown seedlings, but did not complement any spa mutant phenotype in light-grown seedlings or in adult plants.ConclusionOur results show that COP1 protein sequences from Physcomitrella, rice and Arabidopsis have been functionally conserved during evolution, while the SPA proteins showed considerable functional divergence. This may - at least in part - reflect the fact that COP1 is a single copy gene in seed plants, while SPA proteins are encoded by a small gene family of two to four members with possibly sub- or neofunctionalized tasks.


Plant Journal | 2018

The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution

Daniel Lang; Kristian K. Ullrich; Florent Murat; Jörg Fuchs; Jerry Jenkins; Fabian B. Haas; Mathieu Piednoël; Heidrun Gundlach; Michiel Van Bel; Rabea Meyberg; Cristina Vives; Jordi Morata; Aikaterini Symeonidi; Manuel Hiss; Wellington Muchero; Yasuko Kamisugi; Omar Saleh; Guillaume Blanc; Eva L. Decker; Nico van Gessel; Jane Grimwood; Richard D. Hayes; Sean W. Graham; Lee E. Gunter; Stuart F. McDaniel; Sebastian N. W. Hoernstein; Anders Larsson; Fay-Wei Li; Pierre Francois Perroud; Jeremy Phillips

The draft genome of the moss model, Physcomitrella patens, comprised approximately 2000 unordered scaffolds. In order to enable analyses of genome structure and evolution we generated a chromosome-scale genome assembly using genetic linkage as well as (end) sequencing of long DNA fragments. We find that 57% of the genome comprises transposable elements (TEs), some of which may be actively transposing during the life cycle. Unlike in flowering plant genomes, gene- and TE-rich regions show an overall even distribution along the chromosomes. However, the chromosomes are mono-centric with peaks of a class of Copia elements potentially coinciding with centromeres. Gene body methylation is evident in 5.7% of the protein-coding genes, typically coinciding with low GC and low expression. Some giant virus insertions are transcriptionally active and might protect gametes from viral infection via siRNA mediated silencing. Structure-based detection methods show that the genome evolved via two rounds of whole genome duplications (WGDs), apparently common in mosses but not in liverworts and hornworts. Several hundred genes are present in colinear regions conserved since the last common ancestor of plants. These syntenic regions are enriched for functions related to plant-specific cell growth and tissue organization. The P. patens genome lacks the TE-rich pericentromeric and gene-rich distal regions typical for most flowering plant genomes. More non-seed plant genomes are needed to unravel how plant genomes evolve, and to understand whether the P. patens genome structure is typical for mosses or bryophytes.


Molecular Ecology | 2016

Evidence of divergent selection for drought and cold tolerance at landscape and local scales in Abies alba Mill. in the French Mediterranean Alps.

Anna M. Roschanski; Katalin Csilléry; Sascha Liepelt; Sylvie Oddou-Muratorio; Birgit Ziegenhagen; Frédéric Huard; Kristian K. Ullrich; Dragos Postolache; Giovanni G. Vendramin; Bruno Fady

Understanding local adaptation in forest trees is currently a key research and societal priority. Geographically and ecologically marginal populations provide ideal case studies, because environmental stress along with reduced gene flow can facilitate the establishment of locally adapted populations. We sampled European silver fir (Abies alba Mill.) trees in the French Mediterranean Alps, along the margin of its distribution range, from pairs of high‐ and low‐elevation plots on four different mountains situated along a 170‐km east–west transect. The analysis of 267 SNP loci from 175 candidate genes suggested a neutral pattern of east–west isolation by distance among mountain sites. FST outlier tests revealed 16 SNPs that showed patterns of divergent selection. Plot climate was characterized using both in situ measurements and gridded data that revealed marked differences between and within mountains with different trends depending on the season. Association between allelic frequencies and bioclimatic variables revealed eight genes that contained candidate SNPs, of which two were also detected using FST outlier methods. All SNPs were associated with winter drought, and one of them showed strong evidence of selection with respect to elevation. QST–FST tests for fitness‐related traits measured in a common garden suggested adaptive divergence for the date of bud flush and for growth rate. Overall, our results suggest a complex adaptive picture for A. alba in the southern French Alps where, during the east‐to‐west Holocene recolonization, locally advantageous genetic variants established at both the landscape and local scales.


Current Opinion in Biotechnology | 2015

Means to optimize protein expression in transgenic plants

Kristian K. Ullrich; Manuel Hiss; Stefan A. Rensing

The biotechnological production of proteins is currently achieved via expression systems derived from different lineages. In the past years transgenic plants have proven to be able to compete with bacteria or mammalian cell systems. Gene engineering approaches exist to raise yields by controlling mandatory processes in the course of biopharmaceutical protein production. Here we review and discuss the current status and recent improvements of parameters influencing recombinant protein production in transgenic plants. In particular, this review focuses on the so-called inside (mRNA sequence and structure) and outside factors (host and production system/conditions), which are adjustable and allow to optimize protein production via gene engineering.

Collaboration


Dive into the Kristian K. Ullrich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel Hiss

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Lang

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralf Reski

University of Freiburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge