Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristie L. Rose is active.

Publication


Featured researches published by Kristie L. Rose.


Molecular Cell | 2011

Hsp90-Cdc37 Chaperone Complex Regulates Ulk1- and Atg13-Mediated Mitophagy

Joung Hyuck Joo; Frank C. Dorsey; Aashish Joshi; Kristin M. Hennessy-Walters; Kristie L. Rose; Kelly McCastlain; Ji Zhang; Rekha Iyengar; Chang Hwa Jung; Der-Fen Suen; Meredith A. Steeves; Chia Ying Yang; Stephanie M. Prater; Do Hyung Kim; Craig B. Thompson; Richard J. Youle; Paul A. Ney; John L. Cleveland; Mondira Kundu

Autophagy, the primary recycling pathway of cells, plays a critical role in mitochondrial quality control under normal growth conditions and in the response to cellular stress. The Hsp90-Cdc37 chaperone complex coordinately regulates the activity of select kinases to orchestrate many facets of the stress response. Although both maintain mitochondrial integrity, the relationship between Hsp90-Cdc37 and autophagy has not been well characterized. Ulk1, one of the mammalian homologs of yeast Atg1, is a serine-threonine kinase required for mitophagy. Here we show that the interaction between Ulk1 and Hsp90-Cdc37 stabilizes and activates Ulk1, which in turn is required for the phosphorylation and release of Atg13 from Ulk1, and for the recruitment of Atg13 to damaged mitochondria. Hsp90-Cdc37, Ulk1, and Atg13 phosphorylation are all required for efficient mitochondrial clearance. These findings establish a direct pathway that integrates Ulk1- and Atg13-directed mitophagy with the stress response coordinated by Hsp90 and Cdc37.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Proteome-wide prediction of acetylation substrates

Amrita Basu; Kristie L. Rose; Junmei Zhang; Ronald C. Beavis; Beatrix Ueberheide; Benjamin A. Garcia; Brian T. Chait; Yingming Zhao; Donald F. Hunt; Eran Segal; C. David Allis; Sandra B. Hake

Acetylation is a well-studied posttranslational modification that has been associated with a broad spectrum of biological processes, notably gene regulation. Many studies have contributed to our knowledge of the enzymology underlying acetylation, including efforts to understand the molecular mechanism of substrate recognition by several acetyltransferases, but traditional experiments to determine intrinsic features of substrate site specificity have proven challenging. Here, we combine experimental methods with clustering analysis of protein sequences to predict protein acetylation based on the sequence characteristics of acetylated lysines within histones with our unique prediction tool PredMod. We define a local amino acid sequence composition that represents potential acetylation sites by implementing a clustering analysis of histone and nonhistone sequences. We show that this sequence composition has predictive power on 2 independent experimental datasets of acetylation marks. Finally, we detect acetylation for selected putative substrates using mass spectrometry, and report several nonhistone acetylated substrates in budding yeast. Our approach, combined with more traditional experimental methods, may be useful for identifying acetylated substrates proteome-wide.


Molecular Cell | 2015

The Replication Checkpoint Prevents Two Types of Fork Collapse without Regulating Replisome Stability

Huzefa Dungrawala; Kristie L. Rose; Kamakoti P. Bhat; Kareem N. Mohni; Gloria G. Glick; Frank B. Couch; David Cortez

The ATR replication checkpoint ensures that stalled forks remain stable when replisome movement is impeded. Using an improved iPOND protocol combined with SILAC mass spectrometry, we characterized human replisome dynamics in response to fork stalling. Our data provide a quantitative picture of the replisome and replication stress response proteomes in 32 experimental conditions. Importantly, rather than stabilize the replisome, the checkpoint prevents two distinct types of fork collapse. Unsupervised hierarchical clustering of protein abundance on nascent DNA is sufficient to identify protein complexes and place newly identified replisome-associated proteins into functional pathways. As an example, we demonstrate that ZNF644 complexes with the G9a/GLP methyltransferase at replication forks and is needed to prevent replication-associated DNA damage. Our data reveal how the replication checkpoint preserves genome integrity, provide insights into the mechanism of action of ATR inhibitors, and will be a useful resource for replication, DNA repair, and chromatin investigators.


Nature Protocols | 2008

Methods for analyzing peptides and proteins on a chromatographic timescale by electron-transfer dissociation mass spectrometry

Namrata D. Udeshi; Philip D. Compton; Jeffrey Shabanowitz; Donald F. Hunt; Kristie L. Rose

Advancement in proteomics research relies on the development of new, innovative tools for identifying and characterizing proteins. Here, we describe a protocol for analyzing peptides and proteins on a chromatographic timescale by coupling nanoflow reverse-phase (RP) liquid chromatography (LC) to electron-transfer dissociation (ETD) mass spectrometry. For this protocol, proteins can be proteolytically digested before ETD analysis, although digestion is not necessary for all applications. Proteins ≤30 kDa can be analyzed intact, particularly if the objective is protein identification. Peptides or proteins are loaded onto a RP column and are gradient-eluted into an ETD-enabled mass spectrometer. ETD tandem mass spectrometry (MS/MS) provides extensive sequence information required for the unambiguous identification of peptides and proteins and for characterization of posttranslational modifications. ETD is a powerful MS/MS technique and does not compromise the sensitivity and speed necessary for online chromatographic separations. The described procedure for sample preparation, column packing, sample loading and ETD analysis can be implemented in 5–15 h.


Journal of Proteome Research | 2009

Mapping the phosphorylation sites of Ulk1.

Frank C. Dorsey; Kristie L. Rose; Silvia Coenen; Stephanie M. Prater; Valerie Cavett; John L. Cleveland; Jennifer Caldwell-Busby

Ulk1 is a serine/threonine kinase that controls macroautophagy, an essential homeostatic recycling pathway that degrades bulk cytoplasmic material and directs the turnover of organelles such as peroxisomes and mitochondria. Further, macroautophagy is potently induced by signals that trigger metabolic stress, such as hypoxia and amino acid starvation, where its recycling functions provide macromolecules necessary to maintain catabolic metabolism and cell survival. Substrates for Ulk1 have not been identified, and little is known regarding post-translational control of Ulk1 kinase activity and function. To gain insights into the regulatory mechanisms of Ulk1, we developed a robust purification protocol for Ulk1 and demonstrated that Ulk1 is highly phosphorylated and requires autophosphorylation for stability. Importantly, high-resolution, tandem mass spectrometry identified multiple sites of phosphorylation on Ulk1, including several within domains known to regulate macroautophagy. Differential phosphorylation analyses also identified sites of phosphorylation in the C-terminal domain that depend upon or require Ulk1 autophosphorylation.


Biochemistry | 2009

Acetylation of vertebrate H2A.Z and its effect on the structure of the nucleosome.

Toyotaka Ishibashi; Deanna Dryhurst; Kristie L. Rose; Jeffrey Shabanowitz; Donald F. Hunt; Juan Ausió

Purified histone H2A.Z from chicken erythrocytes and a sodium butyrate-treated chicken erythroleukemic cell line was used as a model system to identify the acetylation sites (K4, K7, K11, K13, and K15) and quantify their distribution in this vertebrate histone variant. To understand the role played by acetylation in the modulation of the H2A.Z nucleosome core particle (NCP) stability and conformation, an extensive analysis was conducted on NCPs reconstituted from acetylated forms of histones, including H2A.Z and recombinant H2A.Z (K/Q) acetylation mimic mutants. Although the overall global acetylation of core histones destabilizes the NCP, we found that H2A.Z stabilizes the NCP regardless of its state of acetylation. Interestingly and quite unexpectedly, we found that the change in NCP conformation induced by global histone acetylation is dependent on H2A/H2A.Z acetylation. This suggests that acetylated H2A variants act synergistically with the acetylated forms of the core histone complement to alter the particle conformation. Furthermore, the simultaneous occurrence of H2A.Z and H2A in heteromorphic NCPs that most likely occurs in vivo slightly destabilizes the NCP, but only in the presence of acetylation.


Proceedings of the National Academy of Sciences of the United States of America | 2014

A unique covalent bond in basement membrane is a primordial innovation for tissue evolution

Aaron L. Fidler; Roberto M. Vanacore; Sergei Chetyrkin; Vadim Pedchenko; Gautam Bhave; Viravuth P. Yin; Cody Stothers; Kristie L. Rose; W. Hayes McDonald; Travis A. Clark; Dorin-Bogdan Borza; Robert E. Steele; Michael T. Ivy; Julie K. Hudson; Billy G. Hudson

Significance The evolution of multicellular animals from single-celled ancestors was one of the most significant transitions of life on earth. The emergence of larger, more complex animals able to resist predation and colonize new environments was enabled, in part, by a collagen scaffold, which anchors cells together to form tissues and organs. Here, we show that a unique chemical bond, a link between sulfur and nitrogen atoms called a sulfilimine bond, arose over 500 Mya, binding this scaffold together and enabling tissues to withstand mechanical forces. Peroxidasin forms the bond by generating hypohalous acids as strong oxidants, a form of bleach, which normally function as antimicrobial agents. These understandings may lead to approaches for targeting tumors and treatment of other diseases. Basement membrane, a specialized ECM that underlies polarized epithelium of eumetazoans, provides signaling cues that regulate cell behavior and function in tissue genesis and homeostasis. A collagen IV scaffold, a major component, is essential for tissues and dysfunctional in several diseases. Studies of bovine and Drosophila tissues reveal that the scaffold is stabilized by sulfilimine chemical bonds (S = N) that covalently cross-link methionine and hydroxylysine residues at the interface of adjoining triple helical protomers. Peroxidasin, a heme peroxidase embedded in the basement membrane, produces hypohalous acid intermediates that oxidize methionine, forming the sulfilimine cross-link. We explored whether the sulfilimine cross-link is a fundamental requirement in the genesis and evolution of epithelial tissues by determining its occurrence and evolutionary origin in Eumetazoa and its essentiality in zebrafish development; 31 species, spanning 11 major phyla, were investigated for the occurrence of the sulfilimine cross-link by electrophoresis, MS, and multiple sequence alignment of de novo transcriptome and available genomic data for collagen IV and peroxidasin. The results show that the cross-link is conserved throughout Eumetazoa and arose at the divergence of Porifera and Cnidaria over 500 Mya. Also, peroxidasin, the enzyme that forms the bond, is evolutionarily conserved throughout Metazoa. Morpholino knockdown of peroxidasin in zebrafish revealed that the cross-link is essential for organogenesis. Collectively, our findings establish that the triad—a collagen IV scaffold with sulfilimine cross-links, peroxidasin, and hypohalous acids—is a primordial innovation of the ECM essential for organogenesis and tissue evolution.


BMC Biology | 2009

Characterization of the histone H2A.Z-1 and H2A.Z-2 isoforms in vertebrates.

Deanna Dryhurst; Toyotaka Ishibashi; Kristie L. Rose; José M. Eirín-López; Darin McDonald; Begonia Silva-Moreno; Nik Veldhoen; Caren C. Helbing; Michael J. Hendzel; Jeffrey Shabanowitz; Donald F. Hunt; Juan Ausió

BackgroundWithin chromatin, the histone variant H2A.Z plays a role in many diverse nuclear processes including transcription, preventing the spread of heterochromatin and epigenetic transcriptional memory. The molecular mechanisms of how H2A.Z mediates its effects are not entirely understood. However, it is now known that H2A.Z has two protein isoforms in vertebrates, H2A.Z-1 and H2A.Z-2, which are encoded by separate genes and differ by 3 amino acid residues.ResultsWe report that H2A.Z-1 and H2A.Z-2 are expressed across a wide range of human tissues, they are both acetylated at lysine residues within the N-terminal region and they exhibit similar, but nonidentical, distributions within chromatin. Our results suggest that H2A.Z-2 preferentially associates with H3 trimethylated at lysine 4 compared to H2A.Z-1. The phylogenetic analysis of the promoter regions of H2A.Z-1 and H2A.Z-2 indicate that they have evolved separately during vertebrate evolution.ConclusionsOur biochemical, gene expression, and phylogenetic data suggest that the H2A.Z-1 and H2A.Z-2 variants function similarly yet they may have acquired a degree of functional independence.


Journal of the American Society for Mass Spectrometry | 2015

MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy to Link Protein Images with Proteomics Data

Jeffrey M. Spraggins; David G. Rizzo; Jessica L. Moore; Kristie L. Rose; Neal D. Hammer; Eric P. Skaar; Richard M. Caprioli

AbstractMALDI imaging mass spectrometry is a highly sensitive and selective tool used to visualize biomolecules in tissue. However, identification of detected proteins remains a difficult task. Indirect identification strategies have been limited by insufficient mass accuracy to confidently link ion images to proteomics data. Here, we demonstrate the capabilities of MALDI FTICR MS for imaging intact proteins. MALDI FTICR IMS provides an unprecedented combination of mass resolving power (~75,000 at m/z 5000) and accuracy (<5ppm) for proteins up to ~12kDa, enabling identification based on correlation with LC-MS/MS proteomics data. Analysis of rat brain tissue was performed as a proof-of-concept highlighting the capabilities of this approach by imaging and identifying a number of proteins including N-terminally acetylated thymosin β4 (m/z 4,963.502, 0.6ppm) and ATP synthase subunit ε (m/z 5,636.074, –2.3ppm). MALDI FTICR IMS was also used to differentiate a series of oxidation products of S100A8 (m/z 10,164.03, –2.1ppm), a subunit of the heterodimer calprotectin, in kidney tissue from mice infected with Staphylococcus aureus. S100A8 – M37O/C42O3 (m/z 10228.00, –2.6ppm) was found to co-localize with bacterial microcolonies at the center of infectious foci. The ability of MALDI FTICR IMS to distinguish S100A8 modifications is critical to understanding calprotectin’s roll in nutritional immunity. Graphical Abstractᅟ


Gastroenterology | 2014

Activation of EGFR and ERBB2 by Helicobacter pylori Results in Survival of Gastric Epithelial Cells With DNA Damage

Rupesh Chaturvedi; Mohammad Asim; M. Blanca Piazuelo; Fang Yan; Daniel P. Barry; Johanna C. Sierra; Alberto G. Delgado; Salisha Hill; Robert A. Casero; Luis Eduardo Bravo; Ricardo L. Dominguez; Pelayo Correa; D. Brent Polk; M. Kay Washington; Kristie L. Rose; Kevin L. Schey; Douglas R. Morgan; Richard M. Peek; Keith T. Wilson

BACKGROUND & AIMS The gastric cancer-causing pathogen Helicobacter pylori up-regulates spermine oxidase (SMOX) in gastric epithelial cells, causing oxidative stress-induced apoptosis and DNA damage. A subpopulation of SMOX(high) cells are resistant to apoptosis, despite their high levels of DNA damage. Because epidermal growth factor receptor (EGFR) activation can regulate apoptosis, we determined its role in SMOX-mediated effects. METHODS SMOX, apoptosis, and DNA damage were measured in gastric epithelial cells from H. pylori-infected Egfr(wa5) mice (which have attenuated EGFR activity), Egfr wild-type mice, or in infected cells incubated with EGFR inhibitors or deficient in EGFR. A phosphoproteomic analysis was performed. Two independent tissue microarrays containing each stage of disease, from gastritis to carcinoma, and gastric biopsy specimens from Colombian and Honduran cohorts were analyzed by immunohistochemistry. RESULTS SMOX expression and DNA damage were decreased, and apoptosis increased in H. pylori-infected Egfr(wa5) mice. H. pylori-infected cells with deletion or inhibition of EGFR had reduced levels of SMOX, DNA damage, and DNA damage(high) apoptosis(low) cells. Phosphoproteomic analysis showed increased EGFR and erythroblastic leukemia-associated viral oncogene B (ERBB)2 signaling. Immunoblot analysis showed the presence of a phosphorylated (p)EGFR-ERBB2 heterodimer and pERBB2; knockdown of ErbB2 facilitated apoptosis of DNA damage(high) apoptosis(low) cells. SMOX was increased in all stages of gastric disease, peaking in tissues with intestinal metaplasia, whereas pEGFR, pEGFR-ERBB2, and pERBB2 were increased predominantly in tissues showing gastritis or atrophic gastritis. Principal component analysis separated gastritis tissues from patients with cancer vs those without cancer. pEGFR, pEGFR-ERBB2, pERBB2, and SMOX were increased in gastric samples from patients whose disease progressed to intestinal metaplasia or dysplasia, compared with patients whose disease did not progress. CONCLUSIONS In an analysis of gastric tissues from mice and patients, we identified a molecular signature (based on levels of pEGFR, pERBB2, and SMOX) for the initiation of gastric carcinogenesis.

Collaboration


Dive into the Kristie L. Rose's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge