Kristin Adriaensen
University of Hasselt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristin Adriaensen.
Environmental Science and Pollution Research | 2009
Jaco Vangronsveld; Rolf Herzig; Nele Weyens; Jana Boulet; Kristin Adriaensen; Ann Ruttens; Theo Thewys; Andon Vassilev; Erik Meers; Erika Nehnevajova; Daniel van der Lelie; Michel Mench
Background, aim, and scopeThe use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass.Conclusions and perspectivesIt is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).
Applied and Environmental Microbiology | 2005
Kristin Adriaensen; Trude Vrålstad; Jean-Paul Noben; Jaco Vangronsveld; Jan V. Colpaert
ABSTRACT Natural populations thriving in heavy-metal-contaminated ecosystems are often subjected to selective pressures for increased resistance to toxic metals. In the present study we describe a population of the ectomycorrhizal fungus Suillus luteus that colonized a toxic Cu mine spoil in Norway. We hypothesized that this population had developed adaptive Cu tolerance and was able to protect pine trees against Cu toxicity. We also tested for the existence of cotolerance to Cu and Zn in S. luteus. Isolates from Cu-polluted, Zn-polluted, and nonpolluted sites were grown in vitro on Cu- or Zn-supplemented medium. The Cu mine isolates exhibited high Cu tolerance, whereas the Zn-tolerant isolates were shown to be Cu sensitive, and vice versa. This indicates the evolution of metal-specific tolerance mechanisms is strongly triggered by the pollution in the local environment. Cotolerance does not occur in the S. luteus isolates studied. In a dose-response experiment, the Cu sensitivity of nonmycorrhizal Pinus sylvestris seedlings was compared to the sensitivity of mycorrhizal seedlings colonized either by a Cu-sensitive or Cu-tolerant S. luteus isolate. In nonmycorrhizal plants and plants colonized by the Cu-sensitive isolate, root growth and nutrient uptake were strongly inhibited under Cu stress conditions. In contrast, plants colonized by the Cu-tolerant isolate were hardly affected. The Cu-adapted S. luteus isolate provided excellent insurance against Cu toxicity in pine seedlings exposed to elevated Cu levels. Such a metal-adapted Suillus-Pinus combination might be suitable for large-scale land reclamation at phytotoxic metalliferous and industrial sites.
Annals of Forest Science | 2011
Jan V. Colpaert; Jan H.L. Wevers; Erik Krznaric; Kristin Adriaensen
Abstract• IntroductionHeavy metal pollution is a strong driver of above- and belowground communities and triggers evolutionary adaptation in organisms. This review provides an overview of our knowledge on the effects of toxic concentrations of metals on ectomycorrhizal populations and communities.• DiscussionSelection and adaptations within particular ectomycorrhizal species that colonise host plants in harsh environments is discussed. Among these adaptations, we focus on the metal exclusion strategy that is discovered in metal-tolerant ecotypes of Suillus species that thrive on metalliferous soils. Metal efflux in metal-tolerant ecotypes prevents metal overloading of cytoplasm and vacuole. At the same time, this metal-specific efflux system in Suillus seems to reduce the transfer of large quantities of metals towards the plant–fungus interface, without hampering normal nutrient transfer to the host plant.• ConclusionThe evolutionary adaptation in Suillus species contributes to the survival of host trees on metalliferous soils and might be exploited in phytostabilisation strategies for heavy metal-contaminated soils.
International Journal of Phytoremediation | 2011
Ann Ruttens; Jana Boulet; Nele Weyens; Karen Smeets; Kristin Adriaensen; Erik Meers; Stijn Van Slycken; Filip Tack; Linda Meiresonne; Theo Thewys; Nele Witters; Robert Carleer; Joke Dupae; Jaco Vangronsveld
Phytoremediation, more precisely phytoextraction, has been placed forward as an environmental friendly remediation technique, that can gradually reduce increased soil metal concentrations, in particular the bioavailable fractions. The aim of this study was to investigate the possibilities of growing willows and poplars under short rotation coppice (SRC) on an acid, poor, sandy metal contaminated soil, to combine in this way soil remediation by phytoextraction on one hand, and production of biomass for energy purposes on the other. Above ground biomass productivities were low for poplars to moderate for willows, which was not surprising, taking into account the soil conditions that are not very favorable for growth of these trees. Calculated phytoextraction efficiency was much longer for poplars than these for willows. We calculated that for phytoextraction in this particular case it would take at least 36 years to reach the legal threshold values for cadmium, but in combination with production of feedstock for bioenergy processes, this type of land use can offer an alternative income for local farmers. Based on the data of the first growing cycle, for this particular case, SRC of willows should be recommended.
Bioenergy Research | 2009
Nele Witters; Stijn Van Slycken; Ann Ruttens; Kristin Adriaensen; Erik Meers; Linda Meiresonne; Filip Tack; Theo Thewys; Erik Laes; Jaco Vangronsveld
Large areas of land contaminated with cadmium (Cd), lead (Pb), and zinc (Zn) are currently in agricultural production in the Campine region in Belgium. Cadmium contents in food and fodder crops frequently exceed legal threshold values, resulting in crop confiscation. This imposes a burden on agriculture and regional policy and, therefore, encourages proper soil management. One way to increase agricultural income and improve soil quality is by growing alternative nonfood crops such as willows in short-rotation coppice (SRC) systems that remediate the soil. This paper compares SRC of willow with rapeseed and energy maize regarding four attributes: metal accumulation capacity, gross agricultural income per hectare, CO2 emission avoidance potential, and agricultural acceptance. Based on multicriteria decision analysis, we conclude that, although SRC of willow has a high potential as an energy and remediating crop, it is unlikely to be implemented on the short term in Flanders unless the economic incentives for the farmers are improved.
Environmental Pollution | 2010
Ann Ruttens; Kristin Adriaensen; Erik Meers; A. De Vocht; Wouter Geebelen; Robert Carleer; Michel Mench; Jaco Vangronsveld
A soil column leaching experiment was used to gain insight into the long-term metal immobilization capacity of cyclonic ashes (CAH) compared to lime (LIME). Twenty six years of rainfall were simulated. Initially, all amended soils were brought to an equal soil pH. This was done to obtain optimal conditions for the detection of metal immobilization mechanisms different from just a pH effect. During the simulation period, soil pH in all treatments decreased in parallel. However, the evolution of metal mobility and phytoavailability showed a clearly distinct pattern. The strong reduction in metal immobilizing efficiency observed in the lime treatment at the end of the simulation period was much less pronounced, or even absent, in the CAH treatments. Moreover, metal accumulation in plants grown on the CAH amended soil was significantly lower compared to the untreated and the lime treated soil. CAH + SS treatment delivered the strongest reductions in metal mobility and bioavailability.
Mycorrhiza | 2005
Jan V. Colpaert; Kristin Adriaensen; Ludo A. H. Muller; Marc Lambaerts; Christel Faes; Robert Carleer; Jaco Vangronsveld
Zn pollution has triggered evolution for adaptive Zn tolerance in populations of Suilloid ectomycorrhizal fungi. The objectives of this study were to determine differential physiological responses that are linked to the Zn tolerance trait and to obtain more insight in the general mechanism responsible for the differential growth in Zn-enriched medium. Therefore, we identified intrinsic growth rates and element profiles in Zn-sensitive and Zn-tolerant genotypes. Isolates from Zn-polluted and unpolluted sites were exposed in vitro to increasing Zn2+ stress. The Zn concentration which inhibits growth by 50% (EC50) was determined, and element (Zn, Fe, Mn, Cu, Mg, Ca and P) profiles in the mycelia were analysed. The intraspecific variation in growth rate and nutrient content of the in vitro grown mycelia is great and was not reduced in Zn-tolerant populations. The Zn resistance was not correlated to the intrinsic mycelial growth rate of the isolates or to the concentrations of the elements analysed, except for Zn. At low external Zn, Zn-resistant genotypes had lower Zn concentrations than sensitive isolates. At high external Zn, the differential Zn accumulation pattern between resistant and sensitive isolates became very prominent. Zn-exclusion mechanisms are most likely involved in the naturally selected adaptive Zn resistance. Other mechanisms of Zn detoxification such as sequestration of Zn on cell wall compounds or intracellular chelation and/or compartmentation are probably active but cannot explain the differential Zn sensitivity of the isolates.
Metallomics | 2013
Joske Ruytinx; Hoai Nguyen; May Van Hees; Michiel Op De Beeck; Jaco Vangronsveld; Robert Carleer; Jan V. Colpaert; Kristin Adriaensen
On Zn-polluted soils, populations of the ectomycorrhizal basidiomycete Suillus bovinus exhibit an elevated Zn tolerance when compared to populations on non-polluted sites. To elucidate the mechanism of Zn tolerance, the time-course of Zn uptake was studied in isolates with contrasting Zn tolerance. Unidirectional fluxes and subcellular compartmentation of Zn were investigated through radiotracer flux analyses. Fluorescence imaging was used to support the subcellular Zn compartmentation. After 2 h of exposure to 200 μM Zn, significantly more Zn was accumulated in Zn-sensitive isolates compared to tolerant isolates, despite similar short-term uptake kinetics and similar extracellular Zn sequestration in cell walls. In Zn-sensitive isolates twice as much Zn accumulated in the cytoplasm and 12 times more Zn in the vacuole. (65)Zn efflux analyses revealed a considerably faster Zn export in the Zn-tolerant isolate. The adaptive Zn tolerance in S. bovinus is therefore achieved by a preferential removal of Zn out of the cytoplasm, back into the apoplast, instead of the usual transfer of Zn into the vacuole. Zn exclusion in the fungal symbiont eventually contributes to a lower Zn influx in host plants.
Pedosphere | 2017
Jurate Kumpiene; Laura Giagnoni; Bernd Marschner; Sã©bastien Denys; Michel Mench; Kristin Adriaensen; Jaco Vangronsveld; Markus Puschenreiter; Giancarlo Renella
Abstract Trace element-contaminated soils (TECSs) are one of the consequences of the past industrial development worldwide. Excessive exposure to trace elements (TEs) represents a permanent threat to ecosystems and humans worldwide owing to the capacity of metal(loid)s to cross the cell membranes of living organisms and of human epithelia, and their interference with cell metabolism. Quantification of TE bioavailability in soils is complicated due to the polyphasic and reactive nature of soil constituents. To unravel critical factors controlling soil TE bioavailability and to quantify the ecological toxicity of TECSs, TEs are pivotal for evaluating excessive exposure or deficiencies and controlling the ecological risks. While current knowledge on TE bioavailability and related cumulative consequences is growing, the lack of an integrated use of this concept still hinders its utilization for a more holistic view of ecosystem vulnerability and risks for human health. Bioavailability is not generally included in models for decision making in the appraisal of TECS remediation options. In this review we describe the methods for determining the TE bioavailability and technological developments, gaps in current knowledge, and research needed to better understand how TE bioavailability can be controlled by sustainable TECS management altering key chemical properties, which would allow policy decisions for environmental protection and risk management.
Chemosphere | 2010
Erik Meers; S. Van Slycken; Kristin Adriaensen; Ann Ruttens; Jaco Vangronsveld; G. Du Laing; Nele Witters; Theo Thewys; Filip Tack