Kristin Engelhard
University of Mainz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristin Engelhard.
Anaesthesia | 2014
Patrick Schramm; A.-H. Treiber; Manfred Berres; G. Pestel; Kristin Engelhard; Christian Werner; Dorothea Closhen
Trendelenburg positioning in combination with pneumoperitoneum during robotic‐assisted prostatic surgery possibly impairs cerebrovascular autoregulation. If cerebrovascular autoregulation is disturbed, arterial hypertension might induce cerebral hyperaemia and brain oedema, while low arterial blood pressure can induce cerebral ischaemia. The time course of cerebrovascular autoregulation was investigated during use of the Trendelenburg position and a pneumoperitoneum for robotic‐assisted prostatic surgery using transcranial Doppler ultrasound. Cerebral blood flow velocity was correlated with arterial blood pressure and the autoregulation index (Mx) was calculated. In 23 male patients, Mx was assessed at baseline, after induction of general anaesthesia, during the Trendelenburg position (40–45°), and after repositioning. During the Trendelenburg position, Mx increased over time, indicating an impairment of cerebrovascular autoregulation. After repositioning, Mx recovered to baseline levels. It can be concluded that with longer durations of Trendelenburg position and pneumoperitoneum, cerebrovascular autoregulation deteriorates, and, therefore, blood pressure management should be adapted to avoid cerebral oedema and the duration of Trendelenburg position should be as short as possible.
Anesthesia & Analgesia | 2003
Kristin Engelhard; Christian Werner; Eva Eberspächer; Monika Bachl; Manfred Blobner; Eberhard Hildt; Peter Hutzler; Eberhard Kochs
In this study, we investigated whether the neuroprotection previously seen with dexmedetomidine or S(+)-ketamine involves regulation of proapoptotic (Bax and p53) and antiapoptotic (Bcl-2 and Mdm-2) proteins. Rats were anesthetized with isoflurane. After surgical preparation of isoflurane was discontinued, animals were randomly assigned to receive fentanyl and nitrous oxide (N2O)/oxygen plus 100 &mgr;g/kg of dexmedetomidine intraperitoneally 30 min before ischemia (n = 8), 1 mg · kg−1 · min−1 of S(+)-ketamine and oxygen/air (n = 8), or fentanyl and N2O/oxygen (n = 8; control group). In all three treatment groups, incomplete cerebral ischemia (30 min) was induced by unilateral carotid artery occlusion and hemorrhagic hypotension to a mean arterial blood pressure of 30–35 mm Hg. Four hours after the start of reperfusion, the brains were removed, and the expression of apoptosis-regulating proteins was determined by using immunofluorescence and Western blot analysis. The results were compared with sham-operated animals (n = 8). After cerebral ischemia/reperfusion, the relative protein concentration of Bax was increased by 110% in control animals compared with the dexmedetomidine- and S(+)-ketamine-treated rats and by 140% compared with the sham-operated animals. In animals treated with dexmedetomidine, the expression of Bcl-2 and Mdm-2 was larger compared with control (68% and 210%, respectively) or sham-operated (110% and 180%, respectively) animals. Therefore, it is possible that the neuroprotective properties of dexmedetomidine and S(+)-ketamine seen in previous studies involve ultra-early modulation of the balance between pro- and antiapoptotic proteins.
Anesthesiology | 2002
Kristin Engelhard; Christian Werner; Susanne Kaspar; O. Möllenberg; Manfred Blobner; Monika Bachl; Eberhard Kochs
Background This study investigates whether neuroprotection seen with dexmedetomidine is associated with suppression of peripheral or central sympathetic tone. Methods Thirty fasted male Sprague-Dawley rats were intubated and ventilated with isoflurane and N2O/O2 (fraction of inspired oxygen = 0.33). Catheters were inserted into the right femoral artery and vein and into the right jugular vein. Cerebral blood flow was measured using laser Doppler flowmetry. Bilateral microdialysis probes were placed into the cortex and the dorsal hippocampus. At the end of preparation, the administration of isoflurane was replaced by fentanyl (bolus: 10 microg/kg; infusion: 25 microg x kg(-1) x h(-1)). Animals were randomly assigned to one of the following groups: group 1 (n = 10): control animals; group 2 (n = 10): 100 microg/kg dexmedetomidine administered intraperitoneally 30 min before ischemia; group 3 (n = 10): sham-operated rats. Ischemia (30 min) was produced by unilateral carotid artery occlusion plus hemorrhagic hypotension to a mean arterial blood pressure of 30-35 mmHg to reduce ipsilateral cerebral blood flow by 70%. Pericranial temperature, arterial blood gases, and pH were maintained constant. Cerebral catecholamine and glutamate concentrations and plasma catecholamine concentrations were analyzed using high-performance liquid chromatography. Results During ischemia, dexmedetomidine suppressed circulating norepinephrine concentrations by 95% compared with control animals. In contrast, brain norepinephrine and glutamate concentrations were increased irrespective of dexmedetomidine infusion before ischemia. Conclusions The current data show that the increase of circulating catecholamine concentrations during cerebral ischemia was suppressed with dexmedetomidine. In contrast, dexmedetomidine does not suppress elevation in brain norepinephrine and glutamate concentration associated with cerebral ischemia. This suggests that the neuroprotective effects of dexmedetomidine are not related to inhibition of presynaptic norepinephrine or glutamate release in the brain.
Anesthesiology | 2004
Kristin Engelhard; Christian Werner; Eva Eberspächer; Monika Pape; Uta Stegemann; Kristine Kellermann; Regina Hollweck; Peter Hutzler; Eberhard Kochs
Background:Propofol reduces neuronal damage from cerebral ischemia when investigated for less than 8 postischemic days. This study investigates the long-term effects of propofol on neuronal damage and apoptosis-related proteins after cerebral ischemia and reperfusion. Methods:Male Sprague-Dawley rats were randomly assigned as follows: group 1 (n = 32, control): fentanyl and nitrous oxide–oxygen; group 2 (n = 32, propofol): propofol and oxygen–air. Ischemia (45 min) was induced by carotid artery occlusion and hemorrhagic hypotension. Pericranial temperature and arterial blood gases were maintained constant. After 1, 3, 7, and 28 postischemic days, brains were removed, frozen, and sliced. Hippocampal eosinophilic cells were counted. The amount of apoptosis-related proteins Bax, p53, Bcl-2, and Mdm-2 and neurons positive for activated caspase-3 were analyzed. Results:In propofol-anesthetized rats, no eosinophilic neurons were detected, whereas in control animals, 16–54% of hippocampal neurons were eosinophilic (days 1–28). In control animals, the concentration of Bax was 70–200% higher after cerebral ischemia compared with that in animals receiving propofol over time. Bcl-2 was 50% lower in control animals compared with propofol-anesthetized rats during the first 3 days. In both groups, a maximal 3% of the hippocampal neurons were positive for activated caspase-3. Conclusions:These data show sustained neuroprotection with propofol. This relates to reduced eosinophilic and apoptotic injury. Activated caspase-3–dependent apoptotic pathways were not affected by propofol. This suggests the presence of activated caspase-3–independent apoptotic pathways.
Anaesthesia | 2014
B. Sinner; K. Becke; Kristin Engelhard
Various experimental studies in animals have shown that general anaesthetics are potentially toxic to the developing brain. By inducing apoptosis or interfering with neurogenesis, anaesthetic exposure during a critical period of neuronal development can have significant impact on neurocognitive function later in life. It remains controversial whether these experimental results can be transferred to human beings and this is under intensive scientific evaluation. To gain more insight into possible neurotoxic effects on the human brain of infants and small children, a number of retrospective studies have been performed. At present, there is no clear evidence that exposure to anaesthesia up to the age of 3–4 years is associated with neurocognitive or behavioural deficits. Currently, the PANDA, MASK and GAS studies are underway to explore this relationship. Anaesthesia is not an end in itself, but necessary to facilitate surgical procedures. There is evidence that maintaining physiological conditions is important for the overall outcome following anaesthesia and surgery. Until proven otherwise, it can be recommended to keep anaesthesia and surgery as short as possible, to use short‐acting drugs and/or a combination of general anaesthesia and multimodal pain therapy including systemic analgesics, and local or regional anaesthesia, to reduce the overall drug dosage.
Current Opinion in Anesthesiology | 2006
Kristin Engelhard; Christian Werner
Purpose of review In neurosurgery, anesthesiologists and surgeons focus on the same target – the brain. The nature of anesthetics is to interact with brain physiology, leading to favorable and adverse effects. Research in neuroanesthesia over the last three decades has been dedicated to identifying the optimal anesthetic agent to maintain coupling between cerebral blood flow and metabolism, keep cerebrovascular autoregulation intact, and not increase cerebral blood volume and intracranial pressure. Recent findings Sevoflurane is less vasoactive than halothane, enflurane, isoflurane, or desflurane. The context sensitive half-life is short and similar to that of desflurane, which translates into fast on and offset. Compared with propofol, sevoflurane decreases cerebral blood flow to a lesser extent, while cerebral metabolism is suppressed to the same degree. Sevoflurane does not increase intracranial pressure, while propofol decreases intracranial pressure. Summary In neurosurgical patients with normal intracranial pressure, sevoflurane might be a good alternative to propofol. In patients with reduced intracranial elastance, caused by space occupying lesions, with elevated intracranial pressure or complex surgical approaches, propofol should remain first choice.
Anesthesia & Analgesia | 2006
Monika Pape; Kristin Engelhard; Eva Eberspächer; Regina Hollweck; Kristine Kellermann; Susanne Zintner; Peter Hutzler; Christian Werner
We investigated the long-term effects of sevoflurane on histopathologic injury and key proteins of apoptosis in a rat hemispheric ischemia/reperfusion model. Sixty-four male Sprague-Dawley rats were randomly assigned to Group 1 (fentanyl and N2O/O2; control) and Group 2 (2.0 vol% sevoflurane and O2/air). Ischemia (45 min) was produced by unilateral common carotid artery occlusion plus hemorrhagic hypotension (mean arterial blood pressure 40 mm Hg). Animals were killed after 1, 3, 7, and 28 days. In hematoxylin and eosin-stained brain sections eosinophilic hippocampal neurons were counted. Activated caspase-3 and the apoptosis-regulating proteins Bax, Bcl-2, Mdm-2, and p53 were analyzed by immunostaining. No eosinophilic neurons were detected in sevoflurane-anesthetized rats over time, whereas 9%–38% of the hippocampal neurons were eosinophilic (days 1–28) in control animals. On days 1 and 3, the concentration of Bax was 140%–200% larger in fentanyl/N2O-anesthetized animals compared with sevoflurane. Bcl-2 was 100% less in control animals during the first 3 days. Activated caspase-3 was detected in neurons of both groups (0.75%–2.2%). These data support a sustained neuroprotective potency of sevoflurane related to reduced eosinophilic injury after cerebral ischemia/reperfusion.
Journal of Neurotrauma | 2008
Serge C. Thal; Sebastian Wyschkon; Dana Pieter; Kristin Engelhard; Christian Werner
Quantitative measurements of gene expression require correction for tissue sample size, RNA quantity, and reverse transcription efficiency. This can be achieved by normalization with control genes. The study was designed to identify candidates not altered after brain trauma. Male C57Bl/6 mice were anesthetized with isoflurane, and a pneumatic brain trauma was induced by controlled cortical impact (CCI) on the right parietal cortex. Brains were removed at 15 min, and 3, 6, 12 and 24 h after CCI and from naive animals (n = 6 each). Absolute copies of six control genes (beta-2-microglobin [B2M], cyclophilin A, beta-actin, hypoxanthine ribosyltransferase [HPRT], porphobilinogen deaminase [PBGD], and glyceraldehyde-3-phosphate dehydrogenase [GAPDH]) and one example target gene (iNOS) were determined by real-time reverse transcription-polymerase chain reaction (RT-PCR; Lightcycler) in the traumatic focus and contralateral tissue. Control gene expression was stable until 12 h after CCI. At 24 h after CCI expression of B2M, cyclophilin A and HPRT remained stable in the contusion, while expression of beta-actin, GAPDH, and PBGD increased. Due to variations between animals (+/-85%), increases in beta-actin (+64%) and GAPDH (+59%) did not reach the level of significance. In non-contused tissue, expression of all genes dropped 24 h after CCI (range, -17% to -61%). Due to low variations between animals and stable expression after CCI, B2M and cyclophilin A seem to be suitable to serve as single normalizer. Normalization of the example target gene iNOS resulted in varying relative expression extending from onefold (PBDG) to 10-fold (HPRT). The results suggest that the knowledge of the temporal profile of control genes is essential to properly interpret results of mRNA quantification.
PLOS ONE | 2012
Ralph Timaru-Kast; Clara Luh; Philipp Gotthardt; Changsheng Huang; Michael K. E. Schäfer; Kristin Engelhard; Serge C. Thal
After traumatic brain injury (TBI) elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months) and old (21 months) male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI) on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count) were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2%) compared to young (0%). This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral inflammation without major differences in morphological brain damage compared to young.
PLOS ONE | 2012
Serge C. Thal; Clara Luh; Eva-Verena Schaible; Ralph Timaru-Kast; Jana Hedrich; Heiko J. Luhmann; Kristin Engelhard; Christoph M. Zehendner
Disruption of the blood-brain barrier (BBB) results in cerebral edema formation, which is a major cause for high mortality after traumatic brain injury (TBI). As anesthetic care is mandatory in patients suffering from severe TBI it may be important to elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ) such as zonula occludens-1 (ZO-1) and claudin-5 (cl5) play a central role for BBB stability. First, the influence of the volatile anesthetics sevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER) in murine brain endothelial monolayers and neurovascular co-cultures of the BBB. Secondly brain edema and TJ expression of ZO-1 and cl5 were measured in-vivo after exposure towards volatile anesthetics in native mice and after controlled cortical impact (CCI). In in-vitro endothelial monocultures, both anesthetics significantly reduced TEER within 24 hours after exposure. In BBB co-cultures mimicking the neurovascular unit (NVU) volatile anesthetics had no impact on TEER. In healthy mice, anesthesia did not influence brain water content and TJ expression, while 24 hours after CCI brain water content increased significantly stronger with isoflurane compared to sevoflurane. In line with the brain edema data, ZO-1 expression was significantly higher in sevoflurane compared to isoflurane exposed CCI animals. Immunohistochemical analyses revealed disruption of ZO-1 at the cerebrovascular level, while cl5 was less affected in the pericontusional area. The study demonstrates that anesthetics influence brain edema formation after experimental TBI. This effect may be attributed to modulation of BBB permeability by differential TJ protein expression. Therefore, selection of anesthetics may influence the barrier function and introduce a strong bias in experimental research on pathophysiology of BBB dysfunction. Future research is required to investigate adverse or beneficial effects of volatile anesthetics on patients at risk for cerebral edema.