Patrick Schramm
University of Mainz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick Schramm.
Anaesthesia | 2014
Patrick Schramm; A.-H. Treiber; Manfred Berres; G. Pestel; Kristin Engelhard; Christian Werner; Dorothea Closhen
Trendelenburg positioning in combination with pneumoperitoneum during robotic‐assisted prostatic surgery possibly impairs cerebrovascular autoregulation. If cerebrovascular autoregulation is disturbed, arterial hypertension might induce cerebral hyperaemia and brain oedema, while low arterial blood pressure can induce cerebral ischaemia. The time course of cerebrovascular autoregulation was investigated during use of the Trendelenburg position and a pneumoperitoneum for robotic‐assisted prostatic surgery using transcranial Doppler ultrasound. Cerebral blood flow velocity was correlated with arterial blood pressure and the autoregulation index (Mx) was calculated. In 23 male patients, Mx was assessed at baseline, after induction of general anaesthesia, during the Trendelenburg position (40–45°), and after repositioning. During the Trendelenburg position, Mx increased over time, indicating an impairment of cerebrovascular autoregulation. After repositioning, Mx recovered to baseline levels. It can be concluded that with longer durations of Trendelenburg position and pneumoperitoneum, cerebrovascular autoregulation deteriorates, and, therefore, blood pressure management should be adapted to avoid cerebral oedema and the duration of Trendelenburg position should be as short as possible.
Critical Care | 2012
Patrick Schramm; Klaus Ulrich Klein; Lena Falkenberg; Manfred Berres; Dorothea Closhen; Konrad J. Werhahn; Matthias David; Christian Werner; Kristin Engelhard
IntroductionSepsis-associated delirium (SAD) increases morbidity in septic patients and, therefore, factors contributing to SAD should be further characterized. One possible mechanism might be the impairment of cerebrovascular autoregulation (AR) by sepsis, leading to cerebral hypo- or hyperperfusion in these haemodynamically unstable patients. Therefore, the present study investigates the relationship between the incidence of SAD and the status of AR during sepsis.MethodsCerebral blood flow velocity was measured using transcranial Doppler sonography and was correlated with the invasive arterial blood pressure curve to calculate the index of AR Mx (Mx>0.3 indicates impaired AR). Mx was measured daily during the first 4 days of sepsis. Diagnosis of a SAD was performed using the confusion assessment method for ICU (CAM-ICU) and, furthermore the predominant brain electrical activity in electroencephalogram (EEG) both at day 4 after reduction of sedation to RASS >-2.Results30 critically ill adult patients with severe sepsis or septic shock (APACHE II 32 ± 6) were included. AR was impaired at day 1 in 60%, day 2 in 59%, day 3 in 41% and day 4 in 46% of patients; SAD detected by CAM-ICU was present in 76 % of patients. Impaired AR at day 1 was associated with the incidence of SAD at day 4 (p = 0.035).ConclusionsAR is impaired in the great majority of patients with severe sepsis during the first two days. Impaired AR is associated with SAD, suggesting that dysfunction of AR is one of the trigger mechanisms contributing to the development of SAD.Trial registrationclinicalTrials.gov ID NCT01029080
Journal of Neurosurgical Anesthesiology | 2010
Klaus Ulrich Klein; Patrick Schramm; Martin Glaser; Robert Reisch; Achim Tresch; Christian Werner; Kristin Engelhard
Background The present study assesses the utility of a novel invasive device (O2C-, oxygen-to-see-device) for intraoperative measurement of the cerebral microcirculation. CO2 vasoreactivity during 2 different propofol concentrations was used to investigate changes of capillary venous cerebral blood flow (rvCBF), oxygen saturation (srvO2), and hemoglobin concentration (rvHb) during craniotomy. Methods Thirty-four patients were randomly assigned to a low propofol (4 mg/kg/h) versus a high propofol (6 mg/kg/h) group. A fiberoptic probe was applied on the cortex next to the surgical site. Measurements were performed during lower (35 mm Hg) and higher (45 mm Hg) levels of partial pressure of carbon dioxide (paCO2). Arterio-venous difference in oxygen concentration (avDO2) and approximated cerebral metabolic rate of oxygen (aCMRO2) were calculated for each paCO2 state. Linear models were fitted to test changes of end points in response to paCO2 and propofol concentration. Results In comparison to the lower levels of paCO2, higher levels of paCO2 increased rvCBF (P<0.001), and srvO2 (P=0.002). RvHb remained unchanged during measurements (P=0.325). Calculated avDO2 decreased with increasing paCO2 (P<0.001), whereas aCMRO2 did not change during the study (P=0.999). Propofol concentration had no effect on measured or calculated end points. Conclusions Increase of rvCBF by paCO2 indicates a preserved CO2 reactivity independent of propofol anesthesia. The consecutive rise in srvO2 implies enhanced oxygen availability due to vasodilatation. Unchanged rvHb represents constant venous hemoglobin concentration. As expected, calculated avDO2 decreases with increased paCO2, whereas aCMRO2 remains unchanged. Despite the promising technical approach, the technology needs validation and further investigation for usage during neurosurgery.
BJA: British Journal of Anaesthesia | 2011
Klaus Ulrich Klein; K. Fukui; Patrick Schramm; Axel Stadie; Gerrit Fischer; Christian Werner; Joachim Oertel; Kristin Engelhard
BACKGROUND Propofol reduces cerebral blood flow (CBF) secondary to cerebral metabolic depression. However, in vitro and in vivo studies demonstrate that propofol directly dilates the vascular smooth muscle. This study investigates the effects of propofol-induced changes in bispectral index (BIS) on cerebral microcirculation and oxygenation during craniotomies. METHODS In 21 craniotomy patients undergoing routine craniotomy, anaesthesia was maintained with propofol 4-10 mg kg⁻¹ h⁻¹ and remifentanil 0.1-0.4 µg kg⁻¹ min⁻¹. Propofol concentration was adjusted to achieve higher BIS (target 40) or lower BIS (target 20). Regional measurements of capillary venous blood flow (rvCBF), oxygen saturation (srvO₂), and haemoglobin amount (rvHb) at 2 mm (grey matter) and 8 mm (white matter) cerebral depth were randomly performed at higher and lower BIS by combined laser-Doppler flowmetry and spectroscopy. Calculations: approximated arteriovenous difference in oxygen content (avDO₂) and cerebral metabolic rate of oxygen (aCMRO₂). RESULTS mean values (sd). STATISTICS Mann-Whitney test (*P<0.05). Results Human cerebral microcirculation and oxygen saturation were assessed at propofol dosages 5.1 (2.3) mg kg⁻¹ h⁻¹ [BIS 40 (9)] and 7.8 (2.1) mg kg⁻¹ h⁻¹ [BIS 21 (7)]. Propofol-induced reduction in BIS resulted in increased srvO₂ (P=0.018), and decreased avDO₂ (P=0.025) and aCMRO(2) (P=0.022), in 2 mm cerebral depth, while rvCBF and rvHb remained unchanged. In 8 mm cerebral depth, srvO₂, rvCBF, rvHb, and also calculated parameters avDO₂ and aCMRO₂ remained unaltered. CONCLUSIONS Findings suggest alteration of the CBF/CMRO₂ ratio by propofol in cortical brain regions; therefore, it might be possible that propofol affects coupling of flow and metabolism in the cerebral microcirculation.
European Journal of Anaesthesiology | 2014
Dorothea Closhen; Adrian-Hennig Treiber; Manfred Berres; Anne Sebastiani; Christian Werner; Kristin Engelhard; Patrick Schramm
BACKGROUND Robotic assisted prostatic surgery is frequently used because of its reduced side-effects compared with conventional surgery. During surgery, an extreme Trendelenburg position and CO2 pneumoperitoneum are necessary, which may lead to cerebral oedema, can potentially reduce brain perfusion and therefore could impair cerebral oxygenation. Cerebral oxygen saturation can be measured non-invasively using near-infrared spectroscopy (NIRS). OBJECTIVE The hypothesis of the present study was that steep Trendelenburg positioning during robotic assisted prostatic surgery impairs cerebral oxygen saturation measured using two different NIRS monitors. DESIGN Clinical observational study. SETTING Primary care university hospital, study period from March 2012 to February 2013. PATIENTS A total of 29 patients scheduled for robotic assisted prostatic surgery in a steep Trendelenburg position. INTERVENTIONS Cerebral oxygen saturation was measured throughout anaesthesia using the INVOS sensor (a trend monitor using two infrared wavelengths) for one hemisphere and the FORE-SIGHT sensor (a monitor using four wavelengths of laser light to calculate absolute oxygen saturation) for the other hemisphere in an alternate randomisation. MAIN OUTCOME MEASURE Changes in cerebral oxygenation of more than 5% during surgery in the Trendelenburg position. RESULTS The median duration of Trendelenburg positioning was 190 (interquartile range 130 to 230) min. Cerebral oxygen saturation decreased with INVOS from 74 ± 5% at baseline to a lowest value of 70 ± 4% with a slope of −0.0129 min−1 (P <0.01) and with FORE-SIGHT from 72 ± 5% at baseline to a nadir of 70 ± 3% with a slope of −0.008 min−1 (P <0.01). Comparing INVOS with FORE-SIGHT, there was a good association, with a slope of 0.86 ± 0.04 (P <0.01). CONCLUSION Both monitors showed a clinically irrelevant decrease in cerebral oxygen saturation of less than 5% over 4 h in a steep Trendelenburg position combined with CO2 pneumoperitoneum in patients undergoing robotic assisted prostatic surgery. This extreme positioning seems to be acceptable with regard to cerebral oxygenation. TRIAL REGISTRATION clinicaltrials.gov Identifier: ID NCT01275898.
Journal of Neurosurgical Anesthesiology | 2011
Patrick Schramm; Klaus Ulrich Klein; Monika Pape; Manfred Berres; Christian Werner; Eberhard Kochs; Kristin Engelhard
Background In patients with neuronal injury, the knowledge of the status of cerebrovascular autoregulation can help to optimize the management of the cerebral perfusion pressure. This study characterizes dynamic and static cerebrovascular autoregulation during the first 7 days after severe traumatic brain injury or intracranial hemorrhage. Methods After approval from the IRB, 16 patients were studied. Cerebral blood flow velocity (CBFV) was measured daily for the assessment of dynamic (10 patients) and static (16 patients) cerebrovascular autoregulation in both the middle cerebral arteries using the transcranial Doppler sonography. Dynamic cerebrovascular autoregulation (dAR) was measured using the cuff-deflation method and was expressed by the index of the dAR. The index of the static cerebrovascular autoregulation (sAR) was calculated from changes in the CBFV in relation to drug-induced alterations of the arterial blood pressure. For statistical analyses, t test and mixed effect model were used. Results Both dAR and sAR after brain injury were impaired in most of the patients. The chronologic sequence of the dAR at the ipsilateral injured hemisphere showed a significant decrease until day 4 followed by an incomplete recovery (P<0.002). Changes in sAR were similar, however, they did not gain statistical significance. CBFV was lower at day 1-2 after injury in comparison with day 4 to 7 (P<0.02). Conclusion Daily measured dAR and sAR were impaired after brain injury with a nadir on day 4 and consecutive incomplete recovery over time.
Journal of Neurosurgical Anesthesiology | 2013
Dorothea Closhen; Manfred Berres; Christian Werner; Kristin Engelhard; Patrick Schramm
Background: Although beach chair position (BCP) is frequently used for shoulder surgery, a potentially detrimental influence on cerebral oxygenation is discussed. Therefore, the present study investigated changes in regional cerebral oxygen saturation (rSO2/StO2) during BCP comparing 2 different devices for near-infrared spectroscopy measurement. Methods: Data were collected in 35 patients undergoing shoulder surgery in BCP and compared with a control group of 35 awake volunteers. The rSO2/StO2 was assessed using INVOS and FORE-SIGHT monitors. Mean arterial blood pressure (MAP), peripheral oxygen saturation (SpO2), PeCO2, FiO2, end-tidal sevoflurane concentration, and rSO2/StO2 were measured before positioning, during BCP, and in supine position after surgery. Results: A decrease in rSO2/StO2 could be observed after BCP (INVOS: 76.1% supine vs. 66.7% BCP, P<0.001; FORE-SIGHT: 78.6% supine, 66.1% BCP, P<0.001), which was reversible in supine position. This decrease correlated with MAP during BCP, while in supine position no correlation was detected. In control group BCP did not influence rSO2/StO2. Changes detected with INVOS or FORE-SIGHT cerebral oximeter did not differ. Conclusion: BCP is associated with a decrease in rSO2/StO2 of 10% in anesthetized patients, which is reversible after repositioning. No changes occurred in supine position under general anesthesia as well as in awake subjects in BCP. This underlines the assumption that vasodilation by anesthetics in combination with BCP evoke a drop in rSO2/StO2. A strict hemodynamic management may be necessary to prevent desaturation events. Despite different technology used by the devices, the results of INVOS and FORE-SIGHT cerebral oximeters are comparable.
Neurosurgery | 2011
Klaus Ulrich Klein; Axel Stadie; Kimiko Fukui; Patrick Schramm; Christian Werner; Joachim Oertel; Kristin Engelhard; Gerrit Fischer
BACKGROUND:Accidental vessel occlusion is one major risk of intracranial aneurysm surgery potentially causing cerebral ischemia. The intraoperative assessment of cerebral ischemia remains a technological challenge. OBJECTIVE:As a novel approach, cortical tissue integrity was monitored using simultaneous measurements of regional capillary-venous cerebral blood flow (rvCBF), oxygen saturation (Srvo2), and hemoglobin amount (rvHb) during aneurysm surgery. METHODS:Fifteen patients scheduled for aneurysm surgery of the anterior and posterior circulation were included. A fiber optic probe was placed on the cortex associated with the distal branch of the aneurysmatic vessel. Blinded measurements by combined laser-Doppler flowmetry (rvCBF) and photospectrometry (Srvo2, rvHb) were performed before and after surgical clipping or trapping of the aneurysm. Data were correlated with postoperative imaging and neurological outcome. RESULTS:Cortical measurements could be successfully performed in all patients. Significant increase (>25% change from baseline) or decrease (<25% change from baseline) of rvCBF, Srvo2, and rvHb was detectable in 33 to 46% of patients after surgical intervention. Severe decrease (>50% change from baseline) of all parameters or solitary of rvCBF was correlated to reduced cerebral perfusion and neurological deficits in 2 patients. CONCLUSION:Combined laser-Doppler flowmetry and photospectrometry provides real-time information on cortical microcirculation. Intraoperative alterations of parameters (rvCBF, Srvo2, rvHb) might reflect changes of cerebral tissue integrity during intracranial aneurysm surgery.
Current Opinion in Anesthesiology | 2013
Stephanie Kampf; Patrick Schramm; Klaus Ulrich Klein
Purpose of review Maintenance of adequate blood flow and oxygen to the brain is one of the principal endpoints of all surgery and anesthesia. During operations in general anesthesia, however, the brain is at particular risk for silent ischemia. Despite this risk, the brain still remains one of the last monitored organs in clincial anesthesiology. Recent findings Transcranial Doppler (TCD) sonography and near-infrared spectroscopy (NIRS) experience a revival as these noninvasive technologies help to detect silent cerebral ischemia. TCD allows for quantification of blood flow velocities in basal intracranial arteries. TCD-derived variables such as the pulsatility index might hint toward diminished cognitive reserve or raised intracranial pressure. NIRS allows for assessment of regional cerebral oxygenation. Monitoring should be performed during high-risk surgery for silent cerebral ischemia and special circumstances during critical care medicine. Both techniques allow for the assessment of cerebrovascular autoregulation and individualized management of cerebral hemodynamics. Summary TCD and NIRS are noninvasive monitors that anesthesiologists apply to tailor cerebral oxygen delivery, aiming to safeguard brain function in the perioperative period.
Journal of Neurosurgical Anesthesiology | 2017
Patrick Schramm; Irene Tzanova; Tilman Gööck; Frank Hagen; Irene Schmidtmann; Kristin Engelhard; G. Pestel
Background: Neurosurgical procedures in sitting position need advanced cardiovascular monitoring. Transesophageal echocardiography (TEE) to measure cardiac output (CO)/cardiac index (CI) and stroke volume (SV), and invasive arterial blood pressure measurements for systolic (ABPsys), diastolic (ABPdiast) and mean arterial pressure (MAP) are established monitoring technologies for these kind of procedures. A noninvasive device for continuous monitoring of blood pressure and CO based on a modified Penaz technique (volume-clamp method) was introduced recently. In the present study the noninvasive blood pressure measurements were compared with invasive arterial blood pressure monitoring, and the noninvasive CO monitoring to TEE measurements. Methods: Measurements of blood pressure and CO were performed in 35 patients before/after giving a fluid bolus and a change from supine to sitting position, start of surgery, and repositioning from sitting to supine at the end of surgery. Data pairs from the noninvasive device (Nexfin HD) versus arterial line measurements (ABPsys, ABPdiast, MAP) and versus TEE (CO, CI, SV) were compared using Bland-Altman analysis and percentage error. Results: All parameters compared (CO, CI, SV, ABPsys, ABPdiast, MAP) showed a large bias and wide limits of agreement. Percentage error was above 30% for all parameters except ABPsys. Conclusion: The noninvasive device based on a modified Penaz technique cannot replace arterial blood pressure monitoring or TEE in anesthetized patients undergoing neurosurgery in sitting position.