Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristin M. Riching is active.

Publication


Featured researches published by Kristin M. Riching.


Proceedings of the National Academy of Sciences of the United States of America | 2007

In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia

Melissa C. Skala; Kristin M. Riching; Annette Gendron-Fitzpatrick; Jens C. Eickhoff; Kevin W. Eliceiri; John G. White; Nirmala Ramanujam

Metabolic imaging of the relative amounts of reduced NADH and FAD and the microenvironment of these metabolic electron carriers can be used to noninvasively monitor changes in metabolism, which is one of the hallmarks of carcinogenesis. This study combines cellular redox ratio, NADH and FAD lifetime, and subcellular morphology imaging in three dimensions to identify intrinsic sources of metabolic and structural contrast in vivo at the earliest stages of cancer development. There was a significant (P < 0.05) increase in the nuclear to cytoplasmic ratio (NCR) with depth within the epithelium in normal tissues; however, there was no significant change in NCR with depth in precancerous tissues. The redox ratio significantly decreased in the less differentiated basal epithelial cells compared with the more mature cells in the superficial layer of the normal stratified squamous epithelium, indicating an increase in metabolic activity in cells with increased NCR. However, the redox ratio was not significantly different between the superficial and basal cells in precancerous tissues. A significant decrease was observed in the contribution and lifetime of protein-bound NADH (averaged over the entire epithelium) in both low- and high-grade epithelial precancers compared with normal epithelial tissues. In addition, a significant increase in the protein-bound FAD lifetime and a decrease in the contribution of protein-bound FAD are observed in high-grade precancers only. Increased intracellular variability in the redox ratio, NADH, and FAD fluorescence lifetimes were observed in precancerous cells compared with normal cells.


American Journal of Pathology | 2011

Aligned Collagen Is a Prognostic Signature for Survival in Human Breast Carcinoma

Matthew W. Conklin; Jens C. Eickhoff; Kristin M. Riching; Carolyn Pehlke; Kevin W. Eliceiri; Paolo P. Provenzano; Andreas Friedl; Patricia J. Keely

Evidence for the potent influence of stromal organization and function on invasion and metastasis of breast tumors is ever growing. We have performed a rigorous examination of the relationship of a tumor-associated collagen signature-3 (TACS-3) to the long-term survival rate of human patients. TACS-3 is characterized by bundles of straightened and aligned collagen fibers that are oriented perpendicular to the tumor boundary. An evaluation of TACS-3 was performed in biopsied tissue sections from 196 patients by second harmonic generation imaging of the backscattered signal generated by collagen. Univariate analysis of a Cox proportional hazard model demonstrated that the presence of TACS-3 was associated with poor disease-specific and disease-free survival, resulting in hazard ratios between 3.0 and 3.9. Furthermore, TACS-3 was confirmed to be an independent prognostic indicator regardless of tumor grade and size, estrogen or progesterone receptor status, human epidermal growth factor receptor-2 status, node status, and tumor subtype. Interestingly, TACS-3 was positively correlated to expression of stromal syndecan-1, a receptor for several extracellular matrix proteins including collagens. Because of the strong statistical evidence for poor survival in patients with TACS, and because the assessment can be performed in routine histopathological samples imaged via second harmonic generation or using picrosirius, we propose that quantifying collagen alignment is a viable, novel paradigm for the prediction of human breast cancer survival.


Journal of Biomedical Optics | 2007

In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia.

Melissa C. Skala; Kristin M. Riching; Damian K. Bird; Annette Gendron-Fitzpatrick; Jens C. Eickhoff; Kevin W. Eliceiri; Patricia J. Keely; Nirmala Ramanujam

Multiphoton fluorescence lifetime imaging microscopy (FLIM) is a noninvasive, cellular resolution, 3-D functional imaging technique. We investigate the potential for in vivo precancer diagnosis with metabolic imaging via multiphoton FLIM of the endogenous metabolic cofactor nicotinamide adenine dinucleotide (NADH). The dimethylbenz[alpha]anthracene (DMBA)-treated hamster cheek pouch model of oral carcinogenesis and MCF10A cell monolayers are imaged using multiphoton FLIM at 780-nm excitation. The cytoplasm of normal hamster cheek pouch epithelial cells has short (0.29+/-0.03 ns) and long lifetime components (2.03+/-0.06 ns), attributed to free and protein-bound NADH, respectively. Low-grade precancers (mild to moderate dysplasia) and high-grade precancers (severe dysplasia and carcinoma in situ) are discriminated from normal tissues by their decreased protein-bound NADH lifetime (p<0.05). Inhibition of cellular glycolysis and oxidative phosphorylation in cell monolayers produces an increase and decrease, respectively, in the protein-bound NADH lifetime (p<0.05). Results indicate that the decrease in protein-bound NADH lifetime with dysplasia is due to a shift from oxidative phosphorylation to glycolysis, consistent with the predictions of neoplastic metabolism. We demonstrate that multiphoton FLIM is a powerful tool for the noninvasive characterization and detection of epithelial precancers in vivo.


Biophysical Journal | 2014

3D Collagen Alignment Limits Protrusions to Enhance Breast Cancer Cell Persistence

Kristin M. Riching; Benjamin L. Cox; Max R. Salick; Carolyn Pehlke; Andrew S. Riching; Susan M. Ponik; Benjamin R. Bass; Wendy C. Crone; Yi Jiang; Alissa M. Weaver; Kevin W. Eliceiri; Patricia J. Keely

Patients with mammographically dense breast tissue have a greatly increased risk of developing breast cancer. Dense breast tissue contains more stromal collagen, which contributes to increased matrix stiffness and alters normal cellular responses. Stromal collagen within and surrounding mammary tumors is frequently aligned and reoriented perpendicular to the tumor boundary. We have shown that aligned collagen predicts poor outcome in breast cancer patients, and postulate this is because it facilitates invasion by providing tracks on which cells migrate out of the tumor. However, the mechanisms by which alignment may promote migration are not understood. Here, we investigated the contribution of matrix stiffness and alignment to cell migration speed and persistence. Mechanical measurements of the stiffness of collagen matrices with varying density and alignment were compared with the results of a 3D microchannel alignment assay to quantify cell migration. We further interpreted the experimental results using a computational model of cell migration. We find that collagen alignment confers an increase in stiffness, but does not increase the speed of migrating cells. Instead, alignment enhances the efficiency of migration by increasing directional persistence and restricting protrusions along aligned fibers, resulting in a greater distance traveled. These results suggest that matrix topography, rather than stiffness, is the dominant feature by which an aligned matrix can enhance invasion through 3D collagen matrices.


BMC Cell Biology | 2010

R-Ras regulates β1-integrin trafficking via effects on membrane ruffling and endocytosis

Matthew W. Conklin; Aude Ada-Nguema; Madeline Parsons; Kristin M. Riching; Patricia J. Keely

BackgroundIntegrin-mediated cell adhesion and spreading is dramatically enhanced by activation of the small GTPase, R-Ras. Moreover, R-Ras localizes to the leading edge of migrating cells, and regulates membrane protrusion. The exact mechanisms by which R-Ras regulates integrin function are not fully known. Nor is much known about the spatiotemporal relationship between these two molecules, an understanding of which may provide insight into R-Ras regulation of integrins.ResultsGFP-R-Ras localized to the plasma membrane, most specifically in membrane ruffles, in Cos-7 cells. GFP-R-Ras was endocytosed from these ruffles, and trafficked via multiple pathways, one of which involved large, acidic vesicles that were positive for Rab11. Cells transfected with a dominant negative form of GFP-R-Ras did not form ruffles, had decreased cell spreading, and contained numerous, non-trafficking small vesicles. Conversely, cells transfected with the constitutively active form of GFP-R-Ras contained a greater number of ruffles and large vesicles compared to wild-type transfected cells. Ruffle formation was inhibited by knock-down of endogenous R-Ras with siRNA, suggesting that activated R-Ras is not just a component of, but also an architect of ruffle formation. Importantly, β1-integrin co-localized with endogenous R-Ras in ruffles and endocytosed vesicles. Expression of dominant negative R-Ras or knock down of R-Ras by siRNA prevented integrin accumulation into ruffles, impaired endocytosis of β1-integrin, and decreased β1-integrin-mediated adhesion. Knock-down of R-Ras also perturbed the dynamics of another membrane-localized protein, GFP-VSVG, suggesting a more global role for R-Ras on membrane dynamics. However, while R-Ras co-internalized with integrins, it did not traffic with VSVG, which instead moved laterally out of ruffles within the plane of the membrane, suggesting multiple levels of regulation of and by R-Ras.ConclusionsOur results suggest that integrin function involves integrin trafficking via a cycle of membrane protrusion, ruffling, and endocytosis regulated by R-Ras, providing a novel mechanism by which integrins are linked to R-Ras through control of membrane dynamics.


PLOS ONE | 2014

A Three-Dimensional Computational Model of Collagen Network Mechanics

Byoungkoo Lee; Xin Zhou; Kristin M. Riching; Kevin W. Eliceiri; Patricia J. Keely; Scott A. Guelcher; Alissa M. Weaver; Yi Jiang

Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions.


The International Journal of Biochemistry & Cell Biology | 2015

Rho family GTPases: making it to the third dimension.

Kristin M. Riching; Patricia J. Keely

The role of Rho family GTPases in controlling the actin cytoskeleton and thereby regulating cell migration has been well studied for cells migrating on 2D surfaces. In vivo, cell migration occurs within three-dimensional matrices and along aligned collagen fibers with rather different spatial requirements. Recently, a handful of studies coupled with new approaches have demonstrated that Rho GTPases have unique regulation and roles during cell migration within 3D matrices, along collagen fibers, and in vivo. Here we propose that migration on aligned matrices facilitates spatial organization of Rho family GTPases to restrict and stabilize protrusions in the principle direction of alignment, thereby maintaining persistent migration. The result is coordinated cell movement that ultimately leads to higher rates of metastasis in vivo.


Journal of Visualized Experiments | 2016

Preparation of 3D Collagen Gels and Microchannels for the Study of 3D Interactions In Vivo

Brian Burkel; Brett A. Morris; Suzanne M. Ponik; Kristin M. Riching; Kevin W. Eliceiri; Patricia J. Keely

Historically, most cellular processes have been studied in only 2 dimensions. While these studies have been informative about general cell signaling mechanisms, they neglect important cellular cues received from the structural and mechanical properties of the local microenvironment and extracellular matrix (ECM). To understand how cells interact within a physiological ECM, it is important to study them in the context of 3 dimensional assays. Cell migration, cell differentiation, and cell proliferation are only a few processes that have been shown to be impacted by local changes in the mechanical properties of a 3-dimensional ECM. Collagen I, a core fibrillar component of the ECM, is more than a simple structural element of a tissue. Under normal conditions, mechanical cues from the collagen network direct morphogenesis and maintain cellular structures. In diseased microenvironments, such as the tumor microenvironment, the collagen network is often dramatically remodeled, demonstrating altered composition, enhanced deposition and altered fiber organization. In breast cancer, the degree of fiber alignment is important, as an increase in aligned fibers perpendicular to the tumor boundary has been correlated to poorer patient prognosis(1). Aligned collagen matrices result in increased dissemination of tumor cells via persistent migration(2,3). The following is a simple protocol for embedding cells within a 3-dimensional, fibrillar collagen hydrogel. This protocol is readily adaptable to many platforms, and can reproducibly generate both aligned and random collagen matrices for investigation of cell migration, cell division, and other cellular processes in a tunable, 3-dimensional, physiological microenvironment.


Cancer Research | 2011

Abstract A35: Aligned collagen is a prognostic signature for survival in human breast carcinoma

Matthew W. Conklin; Jens C. Eickhoff; Kristin M. Riching; Carolyn Pehlke; Kevin W. Eliceiri; Paolo P. Provenzano; Andreas Friedl; Patricia J. Keely

Evidence for the potent influence of stromal organization and function on invasion and metastasis of breast tumors is ever growing. Here we have performed a rigorous examination of the relationship of a tumor-associated collagen signature (TACS-3), to the long term survival rate of human patients diagnosed with invasive breast cancer. TACS-3 is characterized by bundles of straightened and aligned collagen fibers that are oriented perpendicular to the tumor boundary. An evaluation of TACS-3 was performed in biopsied tissue sections from 196 patients by second harmonic generation (SHG) imaging of the backscattered signal generated by collagen. Univariate analysis of a Cox proportional hazard model demonstrated that the presence of TACS-3 was associated with poor disease-specific and disease free survival, resulting in hazard ratios between 3.0-3.9. Furthermore, TACS-3 was confirmed to be an independent prognostic indicator regardless of tumor grade and size, ER or PR status, HER-2 status, node status, and tumor subtype. Interestingly, TACS-3 was positively correlated to expression of stromal syndecan-1, a receptor for several extracellular matrix proteins including collagens. Ongoing research is currently investigating both the biochemical signaling pathways that give rise to the TACS-3 phenotype as well as the extent of the influence the mechanical properties of an aligned matrix have on invasion. Because of the strong statistical evidence for poor survival in patients with TACS, and since the assessment can be performed in routine histopathologic samples imaged via SHG or using picrosirius, we propose that quantifying collagen alignment is a viable, novel paradigm for the prediction of human breast cancer survival. Citation Format: Matthew W. Conklin, Jens Eickhoff, Kristin Riching, Carolyn Pehlke, Kevin Eliceiri, Paolo Provenzano, Andreas Friedl, Patricia J. Keely. Aligned collagen is a prognostic signature for survival in human breast carcinoma. [abstract]. In: Proceedings of the AACR Special Conference on Tumor Invasion and Metastasis; Jan 20-23, 2013; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2013;73(3 Suppl):Abstract nr A35.


Biosilico | 2006

In vivo Multiphoton Fluorescence Lifetime Imaging of Free and Protein-Bound NADH in Normal and Pre-Cancerous Epithelia

Melissa C. Skala; Kristin M. Riching; Damiain K. Bird; Kristin M. Vrotsos; Annette Gendron-Fitzpatrick; Kevin W. Eliceiri; Nirmala Ramanujam

Multiphoton fluorescence lifetime imaging microscopy (FLIM) is a three-dimensional functional imaging technique with cellular resolution. Multiphoton FLIM of the endogenous metabolic coenzyme NADH was utilized for the non-invasive characterization of epithelial pre-cancers.

Collaboration


Dive into the Kristin M. Riching's collaboration.

Top Co-Authors

Avatar

Kevin W. Eliceiri

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Patricia J. Keely

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens C. Eickhoff

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Melissa C. Skala

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolyn Pehlke

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Matthew W. Conklin

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yi Jiang

Georgia State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge