Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew W. Conklin is active.

Publication


Featured researches published by Matthew W. Conklin.


American Journal of Pathology | 2011

Aligned Collagen Is a Prognostic Signature for Survival in Human Breast Carcinoma

Matthew W. Conklin; Jens C. Eickhoff; Kristin M. Riching; Carolyn Pehlke; Kevin W. Eliceiri; Paolo P. Provenzano; Andreas Friedl; Patricia J. Keely

Evidence for the potent influence of stromal organization and function on invasion and metastasis of breast tumors is ever growing. We have performed a rigorous examination of the relationship of a tumor-associated collagen signature-3 (TACS-3) to the long-term survival rate of human patients. TACS-3 is characterized by bundles of straightened and aligned collagen fibers that are oriented perpendicular to the tumor boundary. An evaluation of TACS-3 was performed in biopsied tissue sections from 196 patients by second harmonic generation imaging of the backscattered signal generated by collagen. Univariate analysis of a Cox proportional hazard model demonstrated that the presence of TACS-3 was associated with poor disease-specific and disease-free survival, resulting in hazard ratios between 3.0 and 3.9. Furthermore, TACS-3 was confirmed to be an independent prognostic indicator regardless of tumor grade and size, estrogen or progesterone receptor status, human epidermal growth factor receptor-2 status, node status, and tumor subtype. Interestingly, TACS-3 was positively correlated to expression of stromal syndecan-1, a receptor for several extracellular matrix proteins including collagens. Because of the strong statistical evidence for poor survival in patients with TACS, and because the assessment can be performed in routine histopathological samples imaged via second harmonic generation or using picrosirius, we propose that quantifying collagen alignment is a viable, novel paradigm for the prediction of human breast cancer survival.


Cardiovascular Research | 2001

Reduction in density of transverse tubules and L-type Ca2+ channels in canine tachycardia-induced heart failure

Jia-Qiang He; Matthew W. Conklin; Jason D. Foell; Matthew R. Wolff; Robert A. Haworth; Roberto Coronado; Timothy J. Kamp

OBJECTIVE Persistent supraventricular tachycardia leads to the development of a dilated cardiomyopathy with impairment of excitation-contraction (EC) coupling. Since the initial trigger for EC coupling in ventricular muscle is the influx of Ca(2+) through L-type Ca(2+) channels (I(Ca)) in the transverse tubules (T-tubules), we determined if the density of the T-tubule system and L-type Ca(2+) channels change in canine tachycardia pacing-induced cardiomyopathy. METHODS Confocal imaging of isolated ventricular myocytes stained with the membrane dye Di-8-ANEPPS was used to image the T-tubule system, and standard whole-cell patch clamp techniques were used to measure I(Ca) and intramembrane charge movement. RESULTS A complex staining pattern of interconnected tubules including prominent transverse components spaced every approximately 1.6 microm was present in control ventricular myocytes, but failing cells demonstrated a far less regular T-tubule system with a relative loss of T-tubules. In confocal optical slices, the average % of the total cell area staining for T-tubules decreased from 11.5+/-0.4 in control to 8.7+/-0.4% in failing cells (P<0.001). Whole-cell patch clamp studies revealed that I(Ca) density was unchanged. Since whole-cell I(Ca) is due to both the number of channels as well as the functional properties of those channels, we measured intramembrane charge movement as an assay for changes in channel number. The saturating amount of charge that moves due to gating of L-type Ca(2+) channels, Q(on,max), was decreased from 6.5+/-0.6 in control to 2.8+/-0.3 fC/pF in failing myocytes (P<0.001). CONCLUSIONS Cellular remodeling in heart failure results in decreased density of T-tubules and L-type Ca(2+) channels, which contribute to abnormal EC coupling.


Nature Medicine | 2011

Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2

Traci R. Lyons; Jenean O'Brien; Virginia F. Borges; Matthew W. Conklin; Patricia J. Keely; Kevin W. Eliceiri; Andriy Marusyk; Aik Choon Tan; Pepper Schedin

The prognosis of breast cancer in young women is influenced by reproductive history. Women diagnosed within 5 years postpartum have worse prognosis than nulliparous women or women diagnosed during pregnancy. Here we describe a mouse model of postpartum breast cancer that identifies mammary gland involution as a driving force of tumor progression. In this model, human breast cancer cells exposed to the involuting mammary microenvironment form large tumors that are characterized by abundant fibrillar collagen, high cyclooxygenase-2 (COX-2) expression and an invasive phenotype. In culture, tumor cells are invasive in a fibrillar collagen and COX-2–dependent manner. In the involuting mammary gland, inhibition of COX-2 reduces the collagen fibrillogenesis associated with involution, as well as tumor growth and tumor cell infiltration to the lung. These data support further research to determine whether women at high risk for postpartum breast cancer would benefit from treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) during postpartum involution.


Cell Adhesion & Migration | 2012

Why the stroma matters in breast cancer: Insights into breast cancer patient outcomes through the examination of stromal biomarkers

Matthew W. Conklin; Patricia J. Keely

Survival and recurrence rates in breast cancer are variable for common diagnoses, and therefore the biological underpinnings of the disease that determine those outcomes are yet to be fully understood. As a result, translational medicine is one of the fastest growing arenas of study in tumor biology. With advancements in genetic and imaging techniques, archived biopsies can be examined for purposes other than diagnosis. There is a great deal of evidence that points to the stroma as the major regulator of tumor progression following the initial stages of tumor formation, and the stroma may also contribute to risk factors determining tumor formation. Therefore, aspects of stromal biology are well-suited to be a focus for studies of patient outcome, where statistical differences in survival among patients provide evidence as to whether that stromal component is a signpost for tumor progression. In this review we summarize the latest research done where breast cancer patient survival was correlated with aspects of stromal biology, which have been put into four categories: reorganization of the extracellular matrix (ECM) to promote invasion, changes in the expression of stromal cell types, changes in stromal gene expression, and changes in cell biology signaling cascades to and from the stroma.


Biophysical Journal | 1999

Involvement of the Carboxy-Terminus Region of the Dihydropyridine Receptor β1a Subunit in Excitation-Contraction Coupling of Skeletal Muscle

Maryline Beurg; Chris A. Ahern; Paola Vallejo; Matthew W. Conklin; Patricia A. Powers; Ronald G. Gregg; Roberto Coronado

Skeletal muscle knockout cells lacking the beta subunit of the dihydropyridine receptor (DHPR) are devoid of slow L-type Ca(2+) current, charge movements, and excitation-contraction coupling, despite having a normal Ca(2+) storage capacity and Ca(2+) spark activity. In this study we identified a specific region of the missing beta1a subunit critical for the recovery of excitation-contraction. Experiments were performed in beta1-null myotubes expressing deletion mutants of the skeletal muscle-specific beta1a, the cardiac/brain-specific beta2a, or beta2a/beta1a chimeras. Immunostaining was used to determine that all beta constructs were expressed in these cells. We examined the Ca(2+) conductance, charge movements, and Ca(2+) transients measured by confocal fluo-3 fluorescence of transfected myotubes under whole-cell voltage-clamp. All constructs recovered an L-type Ca(2+) current with a density, voltage-dependence, and kinetics of activation similar to that recovered by full-length beta1a. In addition, all constructs except beta2a mutants recovered charge movements with a density similar to full-length beta1a. Thus, all beta constructs became integrated into a skeletal-type DHPR and, except for beta2a mutants, all restored functional DHPRs to the cell surface at a high density. The maximum amplitude of the Ca(2+) transient was not affected by separate deletions of the N-terminus of beta1a or the central linker region of beta1a connecting two highly conserved domains. Also, replacement of the N-terminus half of beta1a with that of beta2a had no effect. However, deletion of 35 residues of beta1a at the C-terminus produced a fivefold reduction in the maximum amplitude of the Ca(2+) transients. A similar observation was made by deletion of the C-terminus of a chimera in which the C-terminus half was from beta1a. The identified domain at the C-terminus of beta1a may be responsible for colocalization of DHPRs and ryanodine receptors (RyRs), or may be required for the signal that opens the RyRs during excitation-contraction coupling. This new role of DHPR beta in excitation-contraction coupling represents a cell-specific function that could not be predicted on the basis of functional expression studies in heterologous cells.


Biophysical Journal | 1999

Contribution of Ryanodine Receptor Type 3 to Ca 2 Sparks in Embryonic Mouse Skeletal Muscle

Matthew W. Conklin; Virginia Barone; Vincenzo Sorrentino; Roberto Coronado

The kinetic behavior of Ca(2+) sparks in knockout mice lacking a specific ryanodine receptor (RyR) isoform should provide molecular information on function and assembly of clusters of RyRs. We examined resting Ca(2+) sparks in RyR type 3-null intercostal myotubes from embryonic day 18 (E18) mice and compared them to Ca(2+) sparks in wild-type (wt) mice of the same age and to Ca(2+) sparks in fast-twitch muscle cells from the foot of wt adult mice. Sparks from RyR type 3-null embryonic cells (368 events) were significantly smaller, briefer, and had a faster time to peak than sparks from wt cells (280 events) of the same age. Sparks in adult cells (220 events) were infrequent, yet they were highly reproducible with population means smaller than those in embryonic RyR type 3-null cells but similar to those reported in adult amphibian skeletal muscle fibers. Three-dimensional representations of the spark peak intensity (DeltaF/Fo) vs. full width at half-maximal intensity (FWHM) vs. full duration at half-maximal intensity (FTHM) showed that wt embryonic sparks were considerably more variable in size and kinetics than sparks in adult muscle. In all cases, tetracaine (0.2 mM) abolished Ca(2+) spark activity, whereas caffeine (0.1 mM) lengthened the spark duration in wt embryonic and adult cells but not in RyR type 3-null cells. These results confirmed that sparks arose from RyRs. The low caffeine sensitivity of RyR type 3-null cells is entirely consistent with observations by other investigators. There are three conclusions from this study: i) RyR type-1 engages in Ca(2+) spark activity in the absence of other RyR isoforms in RyR type 3-null myotubes; ii) Ca(2+) sparks with parameters similar to those reported in adult amphibian skeletal muscle can be detected, albeit at a low frequency, in adult mammalian skeletal muscle cells; and iii) a major contributor to the unusually large Ca(2+) sparks observed in normal (wt) embryonic muscle is RyR type 3. To explain the reduction in the size of sparks in adult compared to embryonic skeletal muscle, we suggest that in embryonic muscle, RyR type 1 and RyR type 3 channels co-contribute to Ca(2+) release during the same spark and that Ca(2+) sparks undergo a maturation process which involves a decrease in RyR type 3.


Biophysical Journal | 2000

Comparison of Ca2+ Sparks Produced Independently by Two Ryanodine Receptor Isoforms (Type 1 or Type 3)

Matthew W. Conklin; Chris A. Ahern; Paola Vallejo; Vincenzo Sorrentino; Hiroshi Takeshima; Roberto Coronado

The molecular determinants of a Ca(2+) spark, those events that determine the sudden opening and closing of a small number of ryanodine receptor (RyR) channels limiting Ca(2+) release to a few milliseconds, are unknown. As a first step we investigated which of two RyR isoforms present in mammalian embryonic skeletal muscle, RyR type 1(RyR-1) or RyR type 3 (RyR-3) has the ability to generate Ca(2+) sparks. Their separate contributions were investigated in intercostal muscle cells of RyR-1 null and RyR-3 null mouse embryos. A comparison of Ca(2+) spark parameters of RyR-1 null versus RyR-3 null cells measured at rest with fluo-3 showed that neither the peak fluorescence intensity (DeltaF/F(o) = 1.25 +/- 0.7 vs. 1.55 +/- 0.6), spatial width at half-max intensity (FWHM = 2.7 +/- 1.2 vs. 2.6 +/- 0.6 microm), nor the duration at half-max intensity (FTHM = 45 +/- 49 vs. 43 +/- 25 ms) was significantly different. Sensitivity to caffeine (0.1 mM) was remarkably different, with sparks in RyR-1 null myotubes becoming brighter and longer in duration, whereas those in RyR-3 null cells remained unchanged. Controls performed in double RyR-1/RyR-3 null cells obtained by mice breeding showed that sparks were not observed in the absence of both isoforms in >150 cells imaged. In conclusion, 1) RyR-1 and RyR-3 appear to be the only intracellular Ca(2+) channels that participate in Ca(2+) spark activity in embryonic skeletal muscle; 2) except in their responsiveness to caffeine, both isoforms have the ability to produce Ca(2+) sparks with nearly identical properties, so it is rather unlikely that a single RyR isoform, when others are also present, would be responsible for Ca(2+) sparks; and 3) because RyR-1 null cells are excitation-contraction (EC) uncoupled and RyR-3 null cells exhibit a normal phenotype, Ca(2+) sparks result from the inherent activity of small clusters of RyRs regardless of the participation of these RyRs in EC coupling.


Journal of Biomedical Optics | 2014

Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer

Jeremy S. Bredfeldt; Yuming Liu; Carolyn Pehlke; Matthew W. Conklin; Joseph M. Szulczewski; David R. Inman; Patricia J. Keely; Robert D. Nowak; T Mackie; Kevin W. Eliceiri

Abstract. Second-harmonic generation (SHG) imaging can help reveal interactions between collagen fibers and cancer cells. Quantitative analysis of SHG images of collagen fibers is challenged by the heterogeneity of collagen structures and low signal-to-noise ratio often found while imaging collagen in tissue. The role of collagen in breast cancer progression can be assessed post acquisition via enhanced computation. To facilitate this, we have implemented and evaluated four algorithms for extracting fiber information, such as number, length, and curvature, from a variety of SHG images of collagen in breast tissue. The image-processing algorithms included a Gaussian filter, SPIRAL-TV filter, Tubeness filter, and curvelet-denoising filter. Fibers are then extracted using an automated tracking algorithm called fiber extraction (FIRE). We evaluated the algorithm performance by comparing length, angle and position of the automatically extracted fibers with those of manually extracted fibers in twenty-five SHG images of breast cancer. We found that the curvelet-denoising filter followed by FIRE, a process we call CT-FIRE, outperforms the other algorithms under investigation. CT-FIRE was then successfully applied to track collagen fiber shape changes over time in an in vivo mouse model for breast cancer.


Journal of Pathology Informatics | 2014

Automated quantification of aligned collagen for human breast carcinoma prognosis

Jeremy S. Bredfeldt; Yuming Liu; Matthew W. Conklin; Patricia J. Keely; Thomas Rockwell Mackie; Kevin W Eliceiri

Background: Mortality in cancer patients is directly attributable to the ability of cancer cells to metastasize to distant sites from the primary tumor. This migration of tumor cells begins with a remodeling of the local tumor microenvironment, including changes to the extracellular matrix and the recruitment of stromal cells, both of which facilitate invasion of tumor cells into the bloodstream. In breast cancer, it has been proposed that the alignment of collagen fibers surrounding tumor epithelial cells can serve as a quantitative image-based biomarker for survival of invasive ductal carcinoma patients. Specific types of collagen alignment have been identified for their prognostic value and now these tumor associated collagen signatures (TACS) are central to several clinical specimen imaging trials. Here, we implement the semi-automated acquisition and analysis of this TACS candidate biomarker and demonstrate a protocol that will allow consistent scoring to be performed throughout large patient cohorts. Methods: Using large field of view high resolution microscopy techniques, image processing and supervised learning methods, we are able to quantify and score features of collagen fiber alignment with respect to adjacent tumor-stromal boundaries. Results: Our semi-automated technique produced scores that have statistically significant correlation with scores generated by a panel of three human observers. In addition, our system generated classification scores that accurately predicted survival in a cohort of 196 breast cancer patients. Feature rank analysis reveals that TACS positive fibers are more well-aligned with each other, are of generally lower density, and terminate within or near groups of epithelial cells at larger angles of interaction. Conclusion: These results demonstrate the utility of a supervised learning protocol for streamlining the analysis of collagen alignment with respect to tumor stromal boundaries.


Biophysical Journal | 1999

Differential Regulation of Skeletal Muscle L-Type Ca2+ Current and Excitation-Contraction Coupling by the Dihydropyridine Receptor β Subunit

Maryline Beurg; M. Sukhareva; Chris A. Ahern; Matthew W. Conklin; Edward Perez-Reyes; Patricia A. Powers; Ronald G. Gregg; Roberto Coronado

The dihydropyridine receptor (DHPR) of skeletal muscle functions as a Ca2+ channel and is required for excitation-contraction (EC) coupling. Here we show that the DHPR beta subunit is involved in the regulation of these two functions. Experiments were performed in skeletal mouse myotubes selectively lacking a functional DHPR beta subunit. These beta-null cells have a low-density L-type current, a low density of charge movements, and lack EC coupling. Transfection of beta-null cells with cDNAs encoding for either the homologous beta1a subunit or the cardiac- and brain-specific beta2a subunit fully restored the L-type Ca2+ current (161 +/- 17 pS/pF and 139 +/- 9 pS/pF, respectively, in 10 mM Ca2+). We compared the Boltzmann parameters of the Ca2+ conductance restored by beta1a and beta2a, the kinetics of activation of the Ca2+ current, and the single channel parameters estimated by ensemble variance analysis and found them to be indistinguishable. In contrast, the maximum density of charge movements in cells expressing beta2a was significantly lower than in cells expressing beta1a (2.7 +/- 0.2 nC/microF and 6.7 +/- 0. 4 nC/microF, respectively). Furthermore, the amplitude of Ca2+ transient measured by confocal line-scans of fluo-3 fluorescence in voltage-clamped cells were 3- to 5-fold lower in myotubes expressing beta2a. In summary, DHPR complexes that included beta2a or beta1a restored L-type Ca2+ channels. However, a DHPR complex with beta1a was required for complete restoration of charge movements and skeletal-type EC coupling. These results suggest that the beta1a subunit participates in key regulatory events required for the EC coupling function of the DHPR.

Collaboration


Dive into the Matthew W. Conklin's collaboration.

Top Co-Authors

Avatar

Patricia J. Keely

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kevin W. Eliceiri

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Paolo P. Provenzano

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Roberto Coronado

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yuming Liu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Andreas Friedl

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suzanne M. Ponik

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Carolyn Pehlke

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Chris A. Ahern

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge