Kristín Rós Kjartansdóttir
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristín Rós Kjartansdóttir.
Biomaterials | 2012
Philipp Jungebluth; Augustinus Bader; Silvia Baiguera; Susanne Möller; Massimo Osvaldo Jaus; Mei Ling Lim; Kaj Fried; Kristín Rós Kjartansdóttir; Tetsuhiko Go; Heike Nave; Wolfgang Harringer; Vanessa Lundin; Ana I. Teixeira; Paolo Macchiarini
We investigated whether decellularized pig tracheas could regenerate in vivo, without being recellularized before transplantation, using the own body as bioreactor. Decellularized pig tracheal scaffolds were intraoperative conditioned with mononuclear cells and growth and differentiation factors. During the postoperative period, the in situ regeneration was boosted by administering bioactive molecules to promote peripheral mobilization and differentiation of stem/progenitor cells and ultimately the regenerative process. Results revealed, after 2 weeks, a nearly normal trachea, with respiratory epithelium and a double-banded cartilage but without any mechanical differences compared to the native tissue. The growth factor administration resulted in a mobilization of progenitor and stem cells into the peripheral circulation and in an up-regulation of anti-apoptotic genes. Isolated stem/progenitor cells could be differentiated in vitro into several cell types, proving their multipotency. We provide evidence that the own body can be used as bioreactor to promote in vivo tissue engineering replacement. Moreover, we demonstrated the beneficial effect of additional pharmaceutical intervention for an improved engraftment of the transplant.
Fertility and Sterility | 2010
Pernille Bach Jørgensen; Kristín Rós Kjartansdóttir; Jens Fedder
OBJECTIVE To provide an evidence-based guideline for professionals working with XY women. DESIGN Review including patient cases from a Danish fertility clinic. SETTING University-associated scientific unit and fertility clinic. PATIENT(S) Three selected cases. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Evaluation of etiology, diagnosis, treatment, and associated disorders in XY women. RESULT(S) Many gene mutations can cause abnormal fetal development leading to androgen insensitivity syndrome or gonadal dysgenesis disorders. Females with these disorders have an XY karyotype but look like girls. They are mostly diagnosed at puberty, and the condition will often lead to serious psychological problems. Increased risk of malignancies and problems with pregnancy and infertility are other aspects that should be considered. This guideline will aid doctors in caring for XY females. CONCLUSION(S) A precise diagnosis is important, because the treatment possibilities (e.g., use of allogenic oocytes) depend on the subgroup to which the XY female belongs.
Frontiers in Endocrinology | 2014
Ahmed Reda; Mi Hou; Luise Landreh; Kristín Rós Kjartansdóttir; Konstantin Svechnikov; Olle Söder; Jan-Bernd Stukenborg
Although three-dimensional testicular cell cultures have been demonstrated to mimic the organization of the testis in vivo and support spermatogenesis, the optimal culture conditions and requirements remain unknown. Therefore, utilizing an established three-dimensional cell culture system that promotes differentiation of pre-meiotic murine male germ cells as far as elongated spermatids, the present study was designed to test the influence of different culture media on germ cell differentiation, Leydig cell functionality, and overall cell survival. Single-cell suspensions prepared from 7-day-old rat testes and containing all the different types of testicular cells were cultured for as long as 31 days, with or without stimulation by gonadotropins. Leydig cell functionality was assessed on the basis of testosterone production and the expression of steroidogenic genes. Gonadotropins promoted overall cell survival regardless of the culture medium employed. Of the various media examined, the most pronounced expression of Star and Tspo, genes related to steroidogenesis, as well as the greatest production of testosterone was attained with Dulbecco’s modified eagle medium + glutamine. Although direct promotion of germ cell maturation by the cell culture medium could not be observed, morphological evaluation in combination with immunohistochemical staining revealed unfavorable organization of tubules formed de novo in the three-dimensional culture, allowing differentiation to the stage of pachytene spermatocytes. Further differentiation could not be observed, probably due to migration of germ cells out of the cell colonies and the consequent lack of support from Sertoli cells. In conclusion, the observations reported here show that in three-dimensional cultures, containing all types of rat testicular cells, the nature of the medium per se exerts a direct influence on the functionality of the rat Leydig cells, but not on germ cell differentiation, due to the lack of proper organization of the Sertoli cells.
Hormone Research in Paediatrics | 2014
Jan-Bernd Stukenborg; Kristín Rós Kjartansdóttir; Ahmed Reda; Eugenia Colón; Jan Philipp Albersmeier; Olle Söder
Background: Germ cells are unique cells that possess the ability to transmit genetic information between generations. Detailed knowledge about the molecular and cellular mechanisms determining the fate of human male germ cells still remains sparse. This is partially due to ethical issues limiting the access to research material. Therefore, the mechanisms of proliferation, differentiation and apoptosis of human male germ cells still remain challenging study objectives. Methods: This review focuses on using English articles accessible in PubMed as well as personal files on the current knowledge of the molecular and cellular mechanisms connected with human testicular germ cell development, maturation failure and the possibility of fertility preservation in patients in whom there is a risk of gonadal failure. However, since rodents, particularly mice, offer the possibility of studying germ cell development by use of genetic modification techniques, some studies using animal models are also discussed. Conclusion: This mini review focuses on the current knowledge about male germ cells. However, the reader is referred to two previous mini reviews focusing on testicular somatic cells, i.e. on Sertoli cells and Leydig cells.
PLOS ONE | 2013
Elham Karimian; Chen Tamm; Andrei S. Chagin; Karin Samuelsson; Kristín Rós Kjartansdóttir; Claes Ohlsson; Lars Sävendahl
Trans-resveratrol (RES), naturally produced by many plants, has a structure similar to synthetic estrogen diethylstilbestrol, but any effect on bone growth has not yet been clarified. Pre-pubertal ovary-intact New Zealand white rabbits received daily oral administration of either vehicle (control) or RES (200 mg/kg) until growth plate fusion occurred. Bone growth and growth plate size were longitudinally monitored by X-ray imaging, while at the endpoint, bone length was assessed by a digital caliper. In addition, pubertal ovariectomized (OVX) rabbits were treated with vehicle, RES or estradiol cypionate (positive control) for 7 or 10 weeks and fetal rat metatarsal bones were cultured in vitro with RES (0.03 µM–50 µM) and followed for up to 19 days. In ovary-intact rabbits, sixteen-week treatment with RES increased tibiae and vertebrae bone growth and subsequently improved final length. In OVX rabbits, RES delayed fusion of the distal tibia, distal femur and proximal tibia epiphyses and femur length and vertebral bone growth increased when compared with controls. Histomorphometrical analysis showed that RES-treated OVX rabbits had a wider distal femur growth plate, enlarged resting zone, increased number/size of hypertrophic chondrocytes, increased height of the hypertrophic zone, and suppressed chondrocyte expression of VEGF and laminin. In cultured fetal rat metatarsal bones, RES stimulated growth at 0.3 µM while at higher concentrations (10 μM and 50 μM) growth was inhibited. We conclude that RES has the potential to improve longitudinal bone growth. The effect was associated with a delay of growth plate fusion resulting in increased final length. These effects were accompanied by a profound suppression of VEGF and laminin expression suggesting that impairment of growth plate vascularization might be an underlying mechanism.
Systems Biology in Reproductive Medicine | 2012
Kristín Rós Kjartansdóttir; Anette Gabrielsen; Ahmed Reda; Olle Söder; Rosita Bergström-Tengzelius; Claus Yding Andersen; Outi Hovatta; Jan-Bernd Stukenborg; Jens Fedder
Establishing a model for in vitro differentiation of human embryonic stem cells (hESCs) towards the germ cell lineage could be used to identify molecular mechanisms behind germ cell differentiation that may help in understanding human infertility. Here, we evaluate whether a lack of exogenous fibroblast growth factor 2 (FGF2) is supporting spontaneous differentiation of hESCs cultured on human foreskin fibroblast (hFF) monolayers towards germ cell lineage. Additionally to depriving the hESCs of exogenous FGF2, cells were stimulated with all-trans retinoic acid (ATRA). To get a more comprehensive impression on effects of removal of FGF2 and stimulation with ATRA, we combined the results of three cell lines for each experimental setting. When combining gene expression profiles of three cell lines for 96 genes, only 6 genes showed a significant up-regulation in all cell lines, when no FGF2 was added to the media for 12 weeks. None of these genes are related to the germ lineage, whereas genes for neuronal cells (PAX6 and NR6A1) and endothelial cells (FLT-1 and PTF1A) were up-regulated. To induce and support the differentiation towards the germ lineage we stimulated hESCs with different concentrations of ATRA for 7 and 14 days. We observed no significant difference in gene expression on RNA level when combining all cell lines. Whereas, the overall outcome was negative, one of these cell lines demonstrated an up-regulation of DDX4 on RNA and protein level after 7 days of ATRA stimulation. In summary, our data showed that the lack of exogenous FGF2 results in up-regulation of genes crucial for neuronal and endothelial cell differentiation of hESCs, but not in the up-regulation of genes related to germ cell differentiation when cultured on hFFs. Additionally, we demonstrated that ATRA supplementation did not result in a general specific direction of hESCs towards the germ lineage.
PLOS ONE | 2015
Kristín Rós Kjartansdóttir; Ahmed Reda; Sarita Panula; Kelly Day; Kjell Hultenby; Olle Söder; Outi Hovatta; Jan-Bernd Stukenborg
Human embryonic stem cell differentiation towards various cell types belonging to ecto-, endo- and mesodermal cell lineages has been demonstrated, with high efficiency rates using standardized differentiation protocols. However, germ cell differentiation from human embryonic stem cells has been very inefficient so far. Even though the influence of various growth factors has been evaluated, the gene expression of different cell lines in relation to their differentiation potential has not yet been extensively examined. In this study, the potential of three male human embryonic stem cell lines to differentiate towards male gonadal cells was explored by analysing their gene expression profiles. The human embryonic stem cell lines were cultured for 14 days as monolayers on supporting human foreskin fibroblasts or as spheres in suspension, and were differentiated using BMP7, or spontaneous differentiation by omitting exogenous FGF2. TLDA analysis revealed that in the undifferentiated state, these cell lines have diverse mRNA profiles and exhibit significantly different potentials for differentiation towards the cell types present in the male gonads. This potential was associated with important factors directing the fate of the male primordial germ cells in vivo to form gonocytes, such as SOX17 or genes involved in the NODAL/ACTIVIN pathway, for example. Stimulation with BMP7 in suspension culture resulted in up-regulation of cytoplasmic SOX9 protein expression in all three lines. The observation that human embryonic stem cells differentiate towards germ and somatic cells after spontaneous and BMP7-induced stimulation in suspension emphasizes the important role of somatic cells in germ cell differentiation in vitro.
Stem Cells Translational Medicine | 2013
Mei Ling Lim; Philipp Jungebluth; Sebastian Sjöqvist; Hero Nikdin; Kristín Rós Kjartansdóttir; Christian Unger; Ivan Vassliev; Paolo Macchiarini
Pluripotent cells such as human embryonic stem cells and human induced pluripotent stem cells are useful in the field of regenerative medicine because they can proliferate indefinitely and differentiate into all cell types. However, a limiting factor for maintaining and propagating stem cells is the need for inactivated fibroblasts as a growth matrix, since these may potentially cause cross‐contamination. In this study, we aimed to maintain stem cells on the extracellular matrix (ECM) of either nonirradiated or γ‐irradiated fibroblasts. It has been demonstrated that the ECM contains factors and proteins vital for the adhesion, proliferation, and differentiation of pluripotent cells. In order to preserve the ECM, the cell layers of the fibroblasts were decellularized by treatment with 0.05% sodium dodecyl sulfate (SDS), which resulted in an absence of DNA as compared with conventional feeder culture. However, SDS treatment did not cause a detectable change in the ECM architecture and integrity. Furthermore, immunohistochemistry demonstrated that expressions of major ECM proteins, such as fibronectin, collagen, and laminin, remained unaltered. The human pluripotent cells cultured on this decellularized matrix maintained gene expression of the pluripotency markers NANOG and OCT4 and had the potency to differentiate to three germ layers. The in vitro culture system shown here has an excellent potential since the main allogeneic components (i.e., DNA of the feeder cells) are removed. It is also a technically easy, fast, safe, and cheap method for maintaining a refined feeder‐free stem cell culture for further cell differentiation studies.
Stem Cells and Development | 2013
Frida Holm; Hero Nikdin; Kristín Rós Kjartansdóttir; Giulia Gaudenzi; Kaj Fried; Pontus Aspenström; Ola Hermanson; Rosita Bergström-Tengzelius
Human embryonic stem cells (hESCs) are known for their potential usage in regenerative medicine, but also for handling sensitivity. Much effort has been put into optimizing the culture methods of hESCs. It has been shown that the use of Rho-associated coiled-coil kinase inhibitor (ROCKi) decreases the cellular stress response and the apoptotic cell death in hESC cultures that have been passaged enzymatically. These observations sparked a wide use of ROCKi in hESC cultures. We and others, however, noted that cells passaged enzymatically with the use of ROCKi had a different morphology compared to cells passaged mechanically. Here we show that hESCs that were enzymatically passaged displayed alterations in the nuclear size compared to cultures that were mechanically passaged. Notably, a dramatically decreased expression of the genes encoding common pluripotency markers, such as OCT4/POU5F1 and NANOG were revealed in enzymatically passaged hESCs compared to mechanically passaged, while such differences were not significant when assessing protein levels. The differences in gene expression did not correlate strongly with commonly analyzed histone modifications (H3K4me3, H3K9me3, H3K27me3, and H4K16ac) on the promoters of these genes. Surprisingly, the effects of enzymatic passaging were at least in part reversible as the gene expression profile of enzymatically passaged hESCs that were transferred back to mechanical passaging, showed no significant difference compared to those hESCs that were continuously passaged mechanically. Our results suggest that enzymatic passaging influences parameters associated with hESC characteristics, and emphasizes the importance of using cells handled in the same manner when comparing results both within and between projects.
Stem Cells International | 2018
Halima Albalushi; Magdalena Kurek; Leif Karlsson; Luise Landreh; Kristín Rós Kjartansdóttir; Olle Söder; Outi Hovatta; Jan-Bernd Stukenborg
Human embryonic stem (hES) cells represent an important tool to study early cell development. The previously described use of human recombinant laminin (LN) 521 represented a step forward in generating clinically safe culture conditions. To test the short-term effect of LN521 on cultured hES cells, five male hES cell lines were cultured on human foreskin fibroblasts (hFFs), Matrigel, LN521, and LN121 and characterized by qPCR, immunofluorescence analysis, as well as their potential for three-germ layer differentiation. Variations in gene expression related to pluripotency, stemness, and testicular cells at different passages and culture conditions were evaluated by qPCR. All cell lines expressed pluripotency markers at protein and RNA level and were able to differentiate into cell types of the three germ layers after being cultured on LN521 for nine passages. Reduction in variation of pluripotency marker expression could be observed after culturing the cells on LN521 for nine passages. hES cells cultured on LN521 exhibited less differentiation, faster cell growth, and attachment when compared to hES cells cultured on LN121 or Matrigel. Our results indicate a positive effect of LN521 in stabilizing pluripotency gene expression and might be the first step towards more controllable and robust culture conditions for hES cells.