Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristin Støen Gunnarsen is active.

Publication


Featured researches published by Kristin Støen Gunnarsen.


Nature Communications | 2012

Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor

Jan Terje Andersen; Bjørn Dalhus; Jason Cameron; Muluneh Bekele Daba; Andrew Plumridge; Leslie Evans; Stephan O. Brennan; Kristin Støen Gunnarsen; Magnar Bjørås; Darrell Sleep; Inger Sandlie

Albumin is the most abundant protein in blood where it has a pivotal role as a transporter of fatty acids and drugs. Like IgG, albumin has long serum half-life, protected from degradation by pH-dependent recycling mediated by interaction with the neonatal Fc receptor, FcRn. Although the FcRn interaction with IgG is well characterized at the atomic level, its interaction with albumin is not. Here we present structure-based modelling of the FcRn–albumin complex, supported by binding analysis of site-specific mutants, providing mechanistic evidence for the presence of pH-sensitive ionic networks at the interaction interface. These networks involve conserved histidines in both FcRn and albumin domain III. Histidines also contribute to intramolecular interactions that stabilize the otherwise flexible loops at both the interacting surfaces. Molecular details of the FcRn–albumin complex may guide the development of novel albumin variants with altered serum half-life as carriers of drugs.


Journal of Biological Chemistry | 2014

Extending Serum Half-life of Albumin by Engineering Neonatal Fc Receptor (FcRn) Binding

Jan Terje Andersen; Bjørn Dalhus; Dorthe Viuff; Birgitte Thue Ravn; Kristin Støen Gunnarsen; Andrew Plumridge; Karen A. Bunting; Filipa Antunes; Rebecca Williamson; Steven Athwal; Elizabeth Allan; Leslie Evans; Magnar Bjørås; Søren Kjærulff; Darrell Sleep; Inger Sandlie; Jason Cameron

Background: FcRn controls the long serum half-life of albumin. Results: A single amino acid substitution of albumin considerably improved binding to FcRn and extended serum half-life in mice and rhesus monkeys. Conclusion: Serum half-life of albumin may be tailored by engineering the FcRn-albumin interaction. Significance: This study reports on engineered albumin that may be attractive for improving the serum half-life of biopharmaceuticals. A major challenge for the therapeutic use of many peptides and proteins is their short circulatory half-life. Albumin has an extended serum half-life of 3 weeks because of its size and FcRn-mediated recycling that prevents intracellular degradation, properties shared with IgG antibodies. Engineering the strictly pH-dependent IgG-FcRn interaction is known to extend IgG half-life. However, this principle has not been extensively explored for albumin. We have engineered human albumin by introducing single point mutations in the C-terminal end that generated a panel of variants with greatly improved affinities for FcRn. One variant (K573P) with 12-fold improved affinity showed extended serum half-life in normal mice, mice transgenic for human FcRn, and cynomolgus monkeys. Importantly, favorable binding to FcRn was maintained when a single-chain fragment variable antibody was genetically fused to either the N- or the C-terminal end. The engineered albumin variants may be attractive for improving the serum half-life of biopharmaceuticals.


Journal of Immunology | 2011

Posttranslational Modification of Gluten Shapes TCR Usage in Celiac Disease

Shuo-Wang Qiao; Melinda Ráki; Kristin Støen Gunnarsen; Geir-Åge Løset; Knut E.A. Lundin; Inger Sandlie; Ludvig M. Sollid

Posttranslational modification of Ag is implicated in several autoimmune diseases. In celiac disease, a cereal gluten-induced enteropathy with several autoimmune features, T cell recognition of the gluten Ag is heavily dependent on the posttranslational conversion of Gln to Glu residues. Evidence suggests that the enhanced recognition of deamidated gluten peptides results from improved peptide binding to the MHC and TCR interaction with the peptide–MHC complex. In this study, we report that there is a biased usage of TCR Vβ6.7 chain among TCRs reactive to the immunodominant DQ2-α-II gliadin epitope. We isolated Vβ6.7 and DQ2-αII tetramer-positive CD4+ T cells from peripheral blood of gluten-challenged celiac patients and sequenced the TCRs of a large number of single T cells. TCR sequence analysis revealed in vivo clonal expansion, convergent recombination, semipublic response, and the notable conservation of a non-germline-encoded Arg residue in the CDR3β loop. Functional testing of a prototype DQ2-α-II–reactive TCR by analysis of TCR transfectants and soluble single-chain TCRs indicate that the deamidated residue in the DQ2-α-II peptide poses constraints on the TCR structure in which the conserved Arg residue is a critical element. The findings have implications for understanding T cell responses to posttranslationally modified Ags.


Journal of Immunology | 2015

Fc Engineering of Human IgG1 for Altered Binding to the Neonatal Fc Receptor Affects Fc Effector Functions

Algirdas Grevys; Malin Bern; Stian Foss; Diane Lynn Bryant Bratlie; Anders Moen; Kristin Støen Gunnarsen; Audun Aase; Terje E. Michaelsen; Inger Sandlie; Jan Terje Andersen

Engineering of the constant Fc part of monoclonal human IgG1 (hIgG1) Abs is an approach to improve effector functions and clinical efficacy of next-generation IgG1-based therapeutics. A main focus in such development is tailoring of in vivo half-life and transport properties by engineering the pH-dependent interaction between IgG and the neonatal Fc receptor (FcRn), as FcRn is the main homeostatic regulator of hIgG1 half-life. However, whether such engineering affects binding to other Fc-binding molecules, such as the classical FcγRs and complement factor C1q, has not been studied in detail. These effector molecules bind to IgG1 in the lower hinge–CH2 region, structurally distant from the binding site for FcRn at the CH2–CH3 elbow region. However, alterations of the structural composition of the Fc may have long-distance effects. Indeed, in this study we show that Fc engineering of hIgG1 for altered binding to FcRn also influences binding to both the classical FcγRs and complement factor C1q, which ultimately results in alterations of cellular mechanisms such as Ab-dependent cell-mediated cytotoxicity, Ab-dependent cellular phagocytosis, and Ab-dependent complement-mediated cell lysis. Thus, engineering of the FcRn–IgG1 interaction may greatly influence effector functions, which has implications for the therapeutic efficacy and use of Fc-engineered hIgG1 variants.


Journal of Biological Chemistry | 2014

Interaction with Both Domain I and III of Albumin Is Required for Optimal pH-dependent Binding to the Neonatal Fc Receptor (FcRn)

Kine Marita Knudsen Sand; Malin Bern; Jeannette Nilsen; Bjørn Dalhus; Kristin Støen Gunnarsen; Jason Cameron; Algirdas Grevys; Karen A. Bunting; Inger Sandlie; Jan Terje Andersen

Background: FcRn regulates the long serum half-life of albumin. Results: The C-terminal DIII of HSA is the principal domain for FcRn binding, whereas two loops in DI at the N terminus modulate the interaction. Conclusion: DI of albumin contributes to optimal FcRn binding. Significance: We highlight the importance of DI for pH-dependent binding to FcRn. Albumin is an abundant blood protein that acts as a transporter of a plethora of small molecules like fatty acids, hormones, toxins, and drugs. In addition, it has an unusual long serum half-life in humans of nearly 3 weeks, which is attributed to its interaction with the neonatal Fc receptor (FcRn). FcRn protects albumin from intracellular degradation via a pH-dependent cellular recycling mechanism. To understand how FcRn impacts the role of albumin as a distributor, it is of importance to unravel the structural mechanism that determines pH-dependent binding. Here, we show that although the C-terminal domain III (DIII) of human serum albumin (HSA) contains the principal binding site, the N-terminal domain I (DI) is important for optimal FcRn binding. Specifically, structural inspection of human FcRn (hFcRn) in complex with HSA revealed that two exposed loops of DI were in proximity with the receptor. To investigate to what extent these contacts affected hFcRn binding, we targeted selected amino acid residues of the loops by mutagenesis. Screening by in vitro interaction assays revealed that several of the engineered HSA variants showed decreased binding to hFcRn, which was also the case for two missense variants with mutations within these loops. In addition, four of the variants showed improved binding. Our findings demonstrate that both DI and DIII are required for optimal binding to FcRn, which has implications for our understanding of the FcRn-albumin relationship and how albumin acts as a distributor. Such knowledge may inspire development of novel HSA-based diagnostics and therapeutics.


Journal of Immunology | 2013

Chimeric Anti-CD14 IGG2/4 Hybrid Antibodies for Therapeutic Intervention in Pig and Human Models of Inflammation

Corinna Lau; Kristin Støen Gunnarsen; Lene Støkken Høydahl; Jan Terje Andersen; Gøril Berntzen; Anne Pharo; Julie Katrine Lindstad; Judith Krey Ludviksen; Ole Lars Brekke; Andreas Barratt-Due; Erik Waage Nielsen; C.R. Stokes; Terje Espevik; Inger Sandlie; Tom Eirik Mollnes

CD14 is a key recognition molecule of innate immune responses, interacting with several TLRs. TLR signaling cross-talks extensively with the complement system, and combined CD14 and complement inhibition has been proved effective in attenuating inflammatory responses. Pig models of human diseases have emerged as valuable tools to study therapeutic intervention, but suitable neutralizing Abs are rare. Undesired Fc-mediated functions, such as platelet activation and IL-8 release induced by the porcine CD14-specific clone Mil2, limit further studies. Therefore, an inert human IgG2/IgG4 hybrid C region was chosen for an rMil2. As revealed in ex vivo and in vivo pig experiments, rMil2 inhibited the CD14-mediated proinflammatory cytokine response similar to the original clone, but lacked the undesired Fc-effects, and inflammation was attenuated further by simultaneous complement inhibition. Moreover, rMil2 bound porcine FcRn, a regulator of t1/2 and biodistribution. Thus, rMil2, particularly combined with complement inhibitors, should be well suited for in vivo studies using porcine models of diseases, such as sepsis and ischemia-reperfusion injury. Similarly, the recombinant anti-human CD14 IgG2/4 Ab, r18D11, was generated with greatly reduced Fc-mediated effects and preserved inhibitory function ex vivo. Such Abs might be drug candidates for the treatment of innate immunity-mediated human diseases.


BMC Biotechnology | 2010

Periplasmic expression of soluble single chain T cell receptors is rescued by the chaperone FkpA

Kristin Støen Gunnarsen; Elin Lunde; Per Eugen Kristiansen; Bjarne Bogen; Inger Sandlie; Geir Åge Løset

BackgroundEfficient expression systems exist for antibody (Ab) molecules, which allow for characterization of large numbers of individual Ab variants. In contrast, such expression systems have been lacking for soluble T cell receptors (TCRs). Attempts to generate bacterial systems have generally resulted in low yields and material which is prone to aggregation and proteolysis. Here we present an optimized periplasmic bacterial expression system for soluble single chain (sc) TCRs.ResultsThe effect of 1) over-expression of the periplasmic chaperon FkpA, 2) culture conditions and 3) molecular design was investigated. Elevated levels of FkpA allowed periplasmic soluble scTCR expression, presumably by preventing premature aggregation and inclusion body formation. Periplasmic expression enables disulphide bond formation, which is a prerequisite for the scTCR to reach its correct fold. It also enables quick and easy recovery of correctly folded protein without the need for time-consuming downstream processing. Expression without IPTG induction further improved the periplasmic expression yield, while addition of sucrose to the growth medium showed little effect. Shaker flask yield of mg levels of active purified material was obtained. The Vαβ domain orientation was far superior to the Vβα domain orientation regarding monomeric yield of functionally folded molecules.ConclusionThe general expression regime presented here allows for rapid production of soluble scTCRs and is applicable for 1) high yield recovery sufficient for biophysical characterization and 2) high throughput screening of such molecules following molecular engineering.


Scientific Reports | 2013

Chaperone-assisted thermostability engineering of a soluble T cell receptor using phage display

Kristin Støen Gunnarsen; Solveig Gunn Kristinsson; Sune Justesen; Terje Frigstad; Søren Buus; Bjarne Bogen; Inger Sandlie; Geir Åge Løset

We here report a novel phage display selection strategy enabling fast and easy selection of thermostabilized proteins. The approach is illustrated with stabilization of an aggregation-prone soluble single chain T cell receptor (scTCR) characteristic of the murine MOPC315 myeloma model. Random mutation scTCR phage libraries were prepared in E. coli over-expressing the periplasmic chaperone FkpA, and such over-expression during library preparation proved crucial for successful downstream selection. The thermostabilized scTCRmut variants selected were produced in high yields and isolated as monomers. Thus, the purified scTCRs could be studied with regard to specificity and equilibrium binding kinetics to pMHC using surface plasmon resonance (SPR). The results demonstrate a difference in affinity for pMHCs that display germ line or tumor-specific peptides which explains the tumor-specific reactivity of the TCR. This FkpA-assisted thermostabilization strategy extends the utility of recombinant TCRs and furthermore, may be of general use for efficient evolution of proteins.


JCI insight | 2017

A TCRα framework–centered codon shapes a biased T cell repertoire through direct MHC and CDR3β interactions

Kristin Støen Gunnarsen; Lene Støkken Høydahl; Louise F. Risnes; Shiva Dahal-Koirala; Ralf Stefan Neumann; Elin Bergseng; Terje Frigstad; Rahel Frick; M. Fleur du Pré; Bjørn Dalhus; Knut E.A. Lundin; Shuo-Wang Qiao; Ludvig M. Sollid; Inger Sandlie; Geir Åge Løset

Selection of biased T cell receptor (TCR) repertoires across individuals is seen in both infectious diseases and autoimmunity, but the underlying molecular basis leading to these shared repertoires remains unclear. Celiac disease (CD) occurs primarily in HLA-DQ2.5+ individuals and is characterized by a CD4+ T cell response against gluten epitopes dominated by DQ2.5-glia-α1a and DQ2.5-glia-α2. The DQ2.5-glia-α2 response recruits a highly biased TCR repertoire composed of TRAV26-1 paired with TRBV7-2 harboring a semipublic CDR3β loop. We aimed to unravel the molecular basis for this signature. By variable gene segment exchange, directed mutagenesis, and cellular T cell activation studies, we found that TRBV7-3 can substitute for TRBV7-2, as both can contain the canonical CDR3β loop. Furthermore, we identified a pivotal germline-encoded MHC recognition motif centered on framework residue Y40 in TRAV26-1 engaging both DQB1*02 and the canonical CDR3β. This allowed prediction of expanded DQ2.5-glia-α2-reactive TCR repertoires, which were confirmed by single-cell sorting and TCR sequencing from CD patient samples. Our data refine our understanding of how HLA-dependent biased TCR repertoires are selected in the periphery due to germline-encoded residues.


Frontiers in Oncology | 2015

Phage Display Engineered T Cell Receptors as Tools for the Study of Tumor Peptide–MHC Interactions

Geir Åge Løset; Gøril Berntzen; Terje Frigstad; Sylvie Pollmann; Kristin Støen Gunnarsen; Inger Sandlie

Cancer immunotherapy has finally come of age, demonstrated by recent progress in strategies that engage the endogenous adaptive immune response in tumor killing. Occasionally, significant and durable tumor regression has been achieved. A giant leap forward was the demonstration that the pre-existing polyclonal T cell repertoire could be re-directed by use of cloned T cell receptors (TCRs), to obtain a defined tumor-specific pool of T cells. However, the procedure must be performed with caution to avoid deleterious cross-reactivity. Here, the use of engineered soluble TCRs may represent a safer, yet powerful, alternative. There is also a need for deeper understanding of the processes that underlie antigen presentation in disease and homeostasis, how tumor-specific peptides are generated, and how epitope spreading evolves during tumor development. Due to its plasticity, the pivotal interaction where a TCR engages a peptide/MHC (pMHC) also requires closer attention. For this purpose, phage display as a tool to evolve cloned TCRs represents an attractive avenue to generate suitable reagents allowing the study of defined pMHC presentation, TCR engagement, as well as for the discovery of novel therapeutic leads. Here, we highlight important aspects of the current status in this field.

Collaboration


Dive into the Kristin Støen Gunnarsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bjørn Dalhus

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terje Espevik

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Terje Frigstad

Oslo University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge