Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristina Langnaese is active.

Publication


Featured researches published by Kristina Langnaese.


Nature | 2010

An intrinsic vasopressin system in the olfactory bulb is involved in social recognition

Vicky A. Tobin; Hirofumi Hashimoto; Douglas W. Wacker; Yuki Takayanagi; Kristina Langnaese; Celine Caquineau; Julia Noack; Rainer Landgraf; Tatsushi Onaka; Gareth Leng; Simone Meddle; Mario Engelmann; Mike Ludwig

Many peptides, when released as chemical messengers within the brain, have powerful influences on complex behaviours. Most strikingly, vasopressin and oxytocin, once thought of as circulating hormones whose actions were confined to peripheral organs, are now known to be released in the brain, where they have fundamentally important roles in social behaviours. In humans, disruptions of these peptide systems have been linked to several neurobehavioural disorders, including Prader–Willi syndrome, affective disorders and obsessive–compulsive disorder, and polymorphisms of V1a vasopressin receptor have been linked to autism. Here we report that the rat olfactory bulb contains a large population of interneurons which express vasopressin, that blocking the actions of vasopressin in the olfactory bulb impairs the social recognition abilities of rats and that vasopressin agonists and antagonists can modulate the processing of information by olfactory bulb neurons. The findings indicate that social information is processed in part by a vasopressin system intrinsic to the olfactory system.


Human Molecular Genetics | 2012

Dysregulation of Rho GTPases in the αPix/Arhgef6 mouse model of X-linked intellectual disability is paralleled by impaired structural and synaptic plasticity and cognitive deficits

Ger J. A. Ramakers; David P. Wolfer; Georg Rosenberger; Kerstin Kuchenbecker; Hans Jürgen Kreienkamp; Janine Prange-Kiel; Gabriele M. Rune; Karin Richter; Kristina Langnaese; Sophie Masneuf; Michael R. Bösl; Klaus Dieter Fischer; Harm J. Krugers; Hans Peter Lipp; Elly van Galen; Kerstin Kutsche

Mutations in the ARHGEF6 gene, encoding the guanine nucleotide exchange factor αPIX/Cool-2 for the Rho GTPases Rac1 and Cdc42, cause X-linked intellectual disability (ID) in humans. We show here that αPix/Arhgef6 is primarily expressed in neuropil regions of the hippocampus. To study the role of αPix/Arhgef6 in neuronal development and plasticity and gain insight into the pathogenic mechanisms underlying ID, we generated αPix/Arhgef6-deficient mice. Gross brain structure in these mice appeared to be normal; however, analysis of Golgi-Cox-stained pyramidal neurons revealed an increase in both dendritic length and spine density in the hippocampus, accompanied by an overall loss in spine synapses. Early-phase long-term potentiation was reduced and long-term depression was increased in the CA1 hippocampal area of αPix/Arhgef6-deficient animals. Knockout animals exhibited impaired spatial and complex learning and less behavioral control in mildly stressful situations, suggesting that this model mimics the human ID phenotype. The structural and electrophysiological alterations in the hippocampus were accompanied by a significant reduction in active Rac1 and Cdc42, but not RhoA. In conclusion, we suggest that imbalance in activity of different Rho GTPases may underlie altered neuronal connectivity and impaired synaptic function and cognition in αPix/Arhgef6 knockout mice.


Biochimica et Biophysica Acta | 2000

Cloning of Z39Ig, a novel gene with immunoglobulin-like domains located on human chromosome X.

Kristina Langnaese; Laurence Colleaux; Dorothee U. Kloos; Michel Fontes; Peter Wieacker

The cDNA sequence and expression profile of a novel human gene, encoding a new member of the immunoglobulin superfamily, is reported. The gene is localized in the pericentromeric region of human X chromosome between the markers DXS1213 and DXS1194. Abundant expression of transcripts was detected in several human fetal tissues, whereas among adult tissues lung and placenta express highest levels of Z39Ig mRNA.


Behavioural Brain Research | 2005

Differences in extinction of conditioned fear in C57BL/6 substrains are unrelated to expression of α-synuclein

Anja Siegmund; Kristina Langnaese; Carsten T. Wotjak

C57BL/6 mice are commonly used as background strains for genetically modified mice, and little attention is usually paid to the notification of the specific substrain. However, it is known that C57BL/6NCrl (B6N) and C57BL/6JOlaHsd (B6JOla) mice differ in the course of extinction of conditioned fear (Stiedl O, Radulovic J, Lohmann R, Birkenfeld K, Palve M, Kammermeier J, et al. Strain and substrain differences in context- and tone-dependent fear conditioning of inbred mice. Behav Brain Res 1999;104:1-12), as well as in the expression of alpha-synuclein (Specht CG, Schoepfer R. Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC Neurosci 2001;2:11). We tested for a causal relationship between the two findings by employing B6N (expressing alpha-synuclein), B6JOla (not expressing alpha-syn) and the third strain C57BL/6JCrl (B6Jax, expressing alpha-syn). We show that alpha-syn does not account for differences in extinction in a fear conditioning task, as its expression did not covary with the decrease of freezing on repeated non-reinforced tone and context exposure in the three strains: B6Jax exhibited fastest extinction followed by B6JOla. In contrast, B6N showed persistent fear over the course of extinction training. The differences in extinction between B6JOla and B6N were unrelated to sensorimotor processing (pain threshold and basal tone reaction) and innate fear (light-dark test). However, B6Jax displayed less innate fear than B6JOla and B6N. Our results of marked differences in innate and conditioned fear in three B6 substrains illustrate the necessity of a strict adherence to an exact mouse strain nomenclature.


Endocrinology | 2009

Vasopressin Administration into the Paraventricular Nucleus Normalizes Plasma Oxytocin and Corticosterone Levels in Brattleboro Rats

Dóra Zelena; Kristina Langnaese; Ágnes Domokos; Ottó Pintér; Rainer Landgraf; G. B. Makara; Mario Engelmann

Adult male rats of the Brattleboro strain were used to investigate the impact of the congenital absence of vasopressin on plasma adrenocorticotropin, corticosterone, and oxytocin concentrations as well as the release pattern of oxytocin within the hypothalamic paraventricular nucleus (PVN), in response to a 10-min forced swimming session. Measurement of adrenocorticotropin in plasma samples collected via chronically implanted jugular venous catheters revealed virtually identical stress responses for vasopressin-lacking Brattleboro (KO) and intact control animals. In contrast, plasma corticosterone and oxytocin levels were found to be significantly elevated 105 min after onset of the stressor in KO animals only. Microdialysis samples collected from the extracellular fluid of the PVN showed significantly higher levels of oxytocin both under basal conditions and in response to stressor exposure in KO vs. intact control animals accompanied by elevated oxytocin mRNA levels in the PVN of KO rats. These findings suggest that the increased oxytocin levels in the PVN caused by the congenital absence of vasopressin may contribute to normal adrenocorticotropin stress responses in KO animals. However, whereas the stressor-induced elevation of plasma oxytocin in KO rats may be responsible for their maintained corticosterone levels, oxytocin seems unable to fully compensate for the lack of vasopressin. This hypothesis was tested by retrodialyzing synthetic vasopressin into the PVN area concomitantly with blood sampling in KO animals. Indeed, this treatment normalized plasma oxytocin and corticosterone levels 105 min after forced swimming. Thus, endogenous vasopressin released within the PVN is likely to act as a paracrine signal to facilitate the return of plasma oxytocin and corticosterone to basal levels after acute stressor exposure.


Journal of Neurochemistry | 2007

Cellular and subcellular rat brain spermidine synthase expression patterns suggest region‐specific roles for polyamines, including cerebellar pre‐synaptic function

Michael Krauss; T. Weiss; Kristina Langnaese; Karin Richter; A.B. Kowski; R.W. Veh; Gregor Laube

In the brain, the polyamines spermidine (Spd) and spermine (Spm) serve highly specific functions by interacting with various ion channel receptors intimately involved with synaptic signaling. Both, glial cells and neurons contain Spd/Spm, but release and uptake mechanisms could re‐distribute polyamines between cell types. The cellular and subcellular localization of polyamine biosynthetic enzymes may therefore offer a more appropriate tool to identify local sources of enhanced Spd/Spm synthesis, which may be related with specific roles in neuronal circuits and synaptic function. A recently characterized antibody against Spd synthase was therefore used to screen the rat brain for compartment‐specific peaks in enzyme expression. The resulting labeling pattern indicated a clearly heterogeneous expression predominantly localized to neurons and neuropil. The highest levels of Spd synthase expression were detected in the accumbens nucleus, taenia tecta, cerebellar cortex, cerebral cortical layer I, hippocampus, hypothalamus, mesencephalic raphe nuclei, central and lateral amygdala, and the circumventricular organs. Besides a diffuse labeling of the neuropil in several brain areas, the distinct labeling of mossy fiber terminals in the cerebellar cortex directly indicated a synaptic role for Spd synthesis. Electron microscopy revealed a preferential distribution of the immunosignal in synaptic vesicle containing areas. A pre‐synaptic localization was also observed in parallel and climbing fiber terminals. Electrophysiological recordings in acute cerebellar slices revealed a Spd‐induced block of evoked extracellular field potentials resulting from mossy fiber stimulation in a dose‐dependent manner.


Urology | 2010

Expression of cAMP-dependent protein kinase isoforms in the human prostate : functional significance and relation to PDE4

Eginhard S. Waldkirch; Stefan Ückert; Katja Sigl; Kristina Langnaese; Karin Richter; Christian G. Stief; Markus A. Kuczyk; Petter Hedlund

OBJECTIVES To investigate the expression of isoforms of the cyclic AMP (cAMP)-dependent protein kinase (cAK) in the transition zone of the human prostate and the functional significance of the enzyme in the control of prostate smooth muscle. METHODS Using Western blot analysis and immunohistochemistry, the expression and distribution in the prostate of cAKIalpha, cAKIbeta, cAKIIalpha, and cAKIIbeta in relation to alpha-actin and the phosphodiesterase PDE4 (types A and B) were investigated. The effects of the cAK inhibitor Rp-8-CPT-cAMPS on the reversion of the adrenergic tension of isolated prostate tissue induced by forskolin, rolipram, sodium nitroprusside (SNP), and tadalafil were examined by means of the organ bath technique. RESULTS Immunosignals specific for cAKIalpha, cAKIIalpha, and cAKIIbeta were observed in the smooth musculature and glandular structures of the prostate. Double stainings revealed the colocalization of alpha-actin and PDE4 with the cAK isoforms. The expression of the cAK isoforms was confirmed by Western blot analysis. The relaxation of the tension induced by norepinephrine brought about by forskolin, rolipram, SNP, and tadalafil was significantly attenuated by Rp-8-CPT-cAMPS. CONCLUSIONS The colocalization of smooth muscle alpha-actin and PDE4 with cAK, as well as the results from the organ bath experiments, provide further evidence for a pivotal role of the cAMP-dependent signaling in the regulation of prostate smooth muscle contractility. Compounds interacting with the cAMP/cAK pathway might represent a new therapeutic avenue to treat symptoms of benign prostatic hyperplasia and lower urinary tract symptomatology.


Stress | 2008

Neuronal nitric oxide synthase gene inactivation reduces the expression of vasopressin in the hypothalamic paraventricular nucleus and of catecholamine biosynthetic enzymes in the adrenal gland of the mouse

G. F. Orlando; Kristina Langnaese; C. Schulz; Gerald Wolf; Mario Engelmann

The impact of a lifelong absence of the neuronal nitric oxide synthase (nNOS) in the neuroendocrine stress response was investigated in nNOS knockout (KO) and wild type (WT) mice under basal conditions and in response to forced swimming. In the hypothalamic paraventricular nucleus oxytocin and corticotropin-releasing-hormone mRNA levels did not differ between these genotypes under resting conditions, whereas vasopressin mRNA levels were significantly lower in nNOS KO than in WT animals. Also, in the adrenal glands basal levels of tyrosine hydroxylase protein, the rate-limiting enzyme for catecholamine biosynthesis, and of phenylethanolamine N-methyltransferase, which converts norepinephrine to epinephrine, were significantly reduced in nNOS KO mice. Plasma adrenocorticotropin, corticosterone, norepinephrine and epinephrine levels were similar in the KO and WT genotypes under resting conditions. In response to forced swimming, a similar increase in plasma adrenocorticotropin and corticosterone was observed in KO and WT animals. Stressor exposure triggered also an increased epinephrine release in WT animals, but did not significantly alter plasma epinephrine levels in KO mice. These data suggest that the chronic absence of nNOS reduces the capacity of epinephrine synthesising enzymes in the adrenal gland to respond to acute stressor exposure with an adequate epinephrine release.


Journal of Neurochemistry | 2006

Spermidine synthase is prominently expressed in the striatal patch compartment and in putative interneurones of the matrix compartment

Michael Krauss; Kristina Langnaese; Karin Richter; Irene Brunk; M. Wieske; Gudrun Ahnert-Hilger; Rüdiger W. Veh; Gregor Laube

The ubiquitous polyamines spermidine and spermine are known as modulators of glutamate receptors and inwardly rectifying potassium channels. They are synthesized by a set of specific enzymes in which spermidine synthase is the rate‐limiting step catalysing the formation of the spermine precursor spermidine from putrescine. Spermidine and spermine were previously localized to astrocytes, probably reflecting storage rather than synthesis in these cells. In order to identify the cellular origin of spermidine and spermine synthesis in the brain, antibodies were raised against recombinant mouse spermidine synthase. As expected, strong spermidine synthase‐like immunoreactivity was obtained in regions known to express high levels of spermidine and spermine, such as the hypothalamic paraventricular and supraoptic nuclei. In the striatum, spermidine synthase was found in neurones and the neuropil of the patch compartment (striosome) as defined by expression of the µ opiate receptor. The distinct expression pattern of spermidine synthase, however, only partially overlapped with the distribution of the products spermidine and spermine in the striatum. In addition, spermidine synthase‐like immunoreactivity was seen in patch compartment‐apposed putative interneurones. These spermidine synthase‐positive neurones did not express any marker characteristic of the major striatal interneurone classes. The neuropil labelling in the patch compartment and in adjacent putative interneurones may indicate a role for polyamines in intercompartmental signalling in the striatum.


Cytogenetic and Genome Research | 2001

Expression pattern and further characterization of human MAGED2 and identification of rodent orthologues

Kristina Langnaese; Dorothee U. Kloos; M. Wehnert; B. Seidel; Peter Wieacker

In a search for genes involved in X-linked mental retardation we have analyzed the expression pattern and genomic structure of human MAGED2. This gene is a member of a new defined MAGE-D cluster in Xp11.2, a hot spot for X-linked mental retardation. Rat and mouse orthologues have been isolated. In contrast to the genes of the MAGE-A, MAGE- B and MAGE-C clusters, MAGED2 is expressed ubiquitously. High expression was detected in specific brain regions and in the interstitium of testes. Five SNPs in the coding region of human MAGED2 were characterized and their allele frequencies determined in a German and Turkish population.

Collaboration


Dive into the Kristina Langnaese's collaboration.

Top Co-Authors

Avatar

Mario Engelmann

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Karin Richter

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Gerald Wolf

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ottó Pintér

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dorothee U. Kloos

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

G. F. Orlando

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge