Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristina Leuner is active.

Publication


Featured researches published by Kristina Leuner.


Neurobiology of Aging | 2009

Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice.

Susanne Hauptmann; Isabel Scherping; Stefan Dröse; Ulrich Brandt; Kathrin Schulz; Marina Jendrach; Kristina Leuner; Anne Eckert; Walter E. Müller

Recent evidence suggests mitochondrial dysfunction as a common early pathomechanism in Alzheimers disease integrating genetic factors related to enhanced amyloid-beta (Ass) production and tau-hyperphosphorylation with aging, as the most relevant sporadic risk factor. To further clarify the synergistic effects of aging and Ass pathology, we used isolated mitochondria of double Swedish and London mutant APP transgenic mice and of non-tg littermates. Pronounced mitochondrial dysfunction in adult Thy-1 APP mice, such as a drop of mitochondrial membrane potential and reduced ATP-levels already appeared at 3 months when elevated intracellular but not extracellular Ass deposits are present. Mitochondrial dysfunction was associated with higher levels of reactive oxygen species, an altered Bcl-xL/Bax ratio and reduction of COX IV activity. We observed significant decreases in state 3 respiration and FCCP-uncoupled respiration in non-tg mice after treatment with extracellular Ass. Similar deficits were seen only in aged Thy-1 APP mice, probably due to compensation within the respiratory chain in young animals. We conclude that Ass dependent mitochondrial dysfunction starts already at 3 months in this AD model before extracellular deposition of Ass and progression accelerates substantially with aging.


PLOS ONE | 2009

Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration

Suzana Gispert; Filomena Ricciardi; Alexander Kurz; Mekhman Azizov; Hans-Hermann Hoepken; Dorothea Becker; Wolfgang Voos; Kristina Leuner; Walter E. Müller; Alexei P. Kudin; Wolfram S. Kunz; Annabelle Zimmermann; Jochen Roeper; Dirk Wenzel; Marina Jendrach; Moisés García-Arencibia; Javier Fernández-Ruiz; Leslie Huber; Hermann Rohrer; Miguel Barrera; Andreas S. Reichert; Udo Rüb; Amy Chen; Robert L. Nussbaum; Georg Auburger

Background Parkinsons disease (PD) is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1) cause the recessive PARK6 variant of PD. Methodology/Principal Findings Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of α-synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. Conclusion Thus, aging Pink1−/− mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death.


Molecular Neurobiology | 2010

Mitochondrial Dysfunction: Common Final Pathway in Brain Aging and Alzheimer’s Disease—Therapeutic Aspects

Walter E. Müller; Anne Eckert; Christopher Kurz; Gunter P. Eckert; Kristina Leuner

As a fully differentiated organ, our brain is very sensitive to cumulative oxidative damage of proteins, lipids, and DNA occurring during normal aging because of its high energy metabolism and the relative low activity of antioxidative defense mechanisms. As a major consequence, perturbations of energy metabolism including mitochondrial dysfunction, alterations of signaling mechanisms and of gene expression culminate in functional deficits. With the increasing average life span of humans, age-related cognitive disorders such as Alzheimer’s disease (AD) are a major health concern in our society. Age-related mitochondrial dysfunction underlies most neurodegenerative diseases, where it is potentiated by disease-specific factors. AD is characterized by two major histopathological hallmarks, initially intracellular and with the progression of the disease extracellular accumulation of oligomeric and fibrillar β-amyloid peptides and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. In this review, we focus on findings in AD animal and cell models indicating that these histopathological alterations induce functional deficits of the respiratory chain complexes and therefore consecutively result in mitochondrial dysfunction and oxidative stress. These parameters lead synergistically with the alterations of the brain aging process to typical signs of neurodegeneration in the later state of the disease, including synaptic dysfunction, loss of synapses and neurites, and finally neuronal loss. We suggest that mitochondrial protection and subsequent reduction of oxidative stress are important targets for prevention and long-term treatment of early stages of AD.


Antioxidants & Redox Signaling | 2012

Mitochondrion-Derived Reactive Oxygen Species Lead to Enhanced Amyloid Beta Formation

Kristina Leuner; Tanja Schütt; Christopher Kurz; Schamim H. Eckert; Carola Schiller; Angelo Occhipinti; Sören Mai; Marina Jendrach; Gunter P. Eckert; Shane E. Kruse; Richard D. Palmiter; Ulrich Brandt; Stephan Dröse; Ilka Wittig; Michael Willem; Christian Haass; Andreas S. Reichert; Walter E. Müller

AIMS Intracellular amyloid beta (Aβ) oligomers and extracellular Aβ plaques are key players in the progression of sporadic Alzheimers disease (AD). Still, the molecular signals triggering Aβ production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species (ROS) are sufficient to increase Aβ generation and thereby initiate a vicious cycle further impairing mitochondrial function. RESULTS Complex I and III dysfunction was induced in a cell model using the respiratory inhibitors rotenone and antimycin, resulting in mitochondrial dysfunction and enhanced ROS levels. Both treatments lead to elevated levels of Aβ. Presence of an antioxidant rescued mitochondrial function and reduced formation of Aβ, demonstrating that the observed effects depended on ROS. Conversely, cells overproducing Aβ showed impairment of mitochondrial function such as comprised mitochondrial respiration, strongly altered morphology, and reduced intracellular mobility of mitochondria. Again, the capability of these cells to generate Aβ was partly reduced by an antioxidant, indicating that Aβ formation was also ROS dependent. Moreover, mice with a genetic defect in complex I, or AD mice treated with a complex I inhibitor, showed enhanced Aβ levels in vivo. INNOVATION We show for the first time that mitochondrion-derived ROS are sufficient to trigger Aβ production in vitro and in vivo. CONCLUSION Several lines of evidence show that mitochondrion-derived ROS result in enhanced amyloidogenic amyloid precursor protein processing, and that Aβ itself leads to mitochondrial dysfunction and increased ROS levels. We propose that starting from mitochondrial dysfunction a vicious cycle is triggered that contributes to the pathogenesis of sporadic AD.


The FASEB Journal | 2007

Hyperforin—a key constituent of St. John’s wort specifically activates TRPC6 channels

Kristina Leuner; Victor Kazanski; Margarethe Müller; Kirill Essin; Bettina Henke; Maik Gollasch; Christian Harteneck; Walter E. Müller

Hyperforin, a bicyclic polyprenylated acylphloroglucinol derivative, is the main active principle of St. Johns wort extract responsible for its anti‐depressive profile. Hyperforin inhibits the neuronal serotonin and norepinephrine uptake comparable to synthetic antidepressants. In contrast to synthetic anti‐depressants directly blocking neuronal amine uptake, hyperforin increases synaptic serotonin and norepi‐nephrine concentrations by an indirect and yet unknown mechanism. Our attempts to identify the molecular target of hyperforin resulted in the identification of TRPC6. Hyperforin induced sodium and calcium entry as well as currents in TRPC6‐expressing cells. Sodium currents and the subsequent breakdown of the membrane sodium gradients may be the rationale for the inhibition of neuronal amine uptake. The hyper‐forin‐induced cation entry was highly specific and related to TRPC6 and was suppressed in cells expressing a dominant negative mutant of TRPC6, whereas phylo‐genetically related channels, i.e., TRPC3 remained unaffected. Furthermore, hyperforin induces neuronal axonal sprouting like nerve growth factor in a TRPC6‐dependent manner. These findings support the role of TRPC channels in neurite extension and identify hyper‐forin as the first selective pharmacological tool to study TRPC6 function. Hyperforin integrates inhibition of neurotransmitter uptake and neurotrophic property by specific activation of TRPC6 and represents an interesting lead‐structure for a new class of antidepres‐sants.— Leuner, K., Kazanski, V., Müller, M., Essin, K., Henke, B., Gollasch, M., Harteneck, C., Müller, W. E. Hyperforin—a key constituent of St. Johns wort specifically activates TRPC6 channels. FASEB J. 21, 4101–4111 (2007)


Molecular Neurobiology | 2012

From Mitochondrial Dysfunction to Amyloid Beta Formation: Novel Insights into the Pathogenesis of Alzheimer’s Disease

Kristina Leuner; Walter E. Müller; Andreas S. Reichert

The non-Mendelian sporadic Alzheimer’s disease (AD) is the most frequent form of dementia diagnosed worldwide. The most important risk factor to develop sporadic AD is aging itself. Next to hyperphosphorylated Tau, intracellular amyloid beta (Aß) oligomers are known to initiate a cascade of pathological events ranging from mitochondrial dysfunction, synaptic dysfunction, oxidative stress, and loss of calcium regulation, to inflammation. All these events are considered to play an important role in the progressive loss of neurons. The molecular mechanisms determining the balance between Aß production and clearance during the progression of the disease are not well understood. Furthermore, there is cumulating evidence that Aß formation impairs mitochondrial function and that mitochondrial dysfunction is an early event in the pathogenesis of AD. On the other hand, mitochondrial dysfunction, in particular increased formation of mitochondrially derived reactive oxygen species, promote Aß formation. Here, we review these latest findings linking mitochondrial dysfunction and Aß formation. We propose that mitochondrial dysfunction, which is well-known to increase with age, is an initial trigger for Aß production. As Aß itself further accelerates mitochondrial dysfunction and oxidative stress, its formation is self-stimulated. Taken together, a vicious cycle is initiated that originates from mitochondrial dysfunction, implying that AD can be viewed as an age-associated mitochondrial disorder. The proposed mechanism sheds new light on the pathophysiological changes taking place during the progression of AD as well as in the aging process.


Molecular Neurobiology | 2012

Mitochondrial Dysfunction—A Pharmacological Target in Alzheimer's Disease

Gunter P. Eckert; Kathrin Renner; Schamim H. Eckert; Janett Eckmann; Stephanie Hagl; Reham M. Abdel-Kader; Christopher Kurz; Kristina Leuner; Walter E. Müller

Increasing evidences suggest that mitochondrial dysfunction plays an important role in the pathogenesis of neurodegenerative diseases including Alzheimers disease (AD). Alterations of mitochondrial efficiency and function are mainly related to alterations in mitochondrial content, amount of respiratory enzymes, or changes in enzyme activities leading to oxidative stress, mitochondrial permeability transition pore opening, and enhanced apoptosis. More recently, structural changes of the network are related to bioenergetic function, and its consequences are a matter of intensive research. Several mitochondria-targeting compounds with potential efficacy in AD including dimebon, methylene blue, piracetam, simvastatin, Ginkgo biloba, curcumin, and omega-3 polyunsaturated fatty acids have been identified. The majority of preclinical data indicate beneficial effects, whereas most controlled clinical trials did not meet the expectations. Since mitochondrial dysfunction represents an early event in disease progression, one reason for the disappointing clinical results could be that pharmacological interventions might came too late. Thus, more studies are needed that focus on therapeutic strategies starting before severe disease progress.


Journal of Biological Chemistry | 2008

Specific TRPC6 Channel Activation, a Novel Approach to Stimulate Keratinocyte Differentiation

Margarethe Müller; Kirill Essin; Kerstin Hill; Heike Beschmann; Simone A. Rubant; Christoph M. Schempp; Maik Gollasch; W. Henning Boehncke; Christian Harteneck; Walter E. Müller; Kristina Leuner

The protective epithelial barrier in our skin undergoes constant regulation, whereby the balance between differentiation and proliferation of keratinocytes plays a major role. Impaired keratinocyte differentiation and proliferation are key elements in the pathophysiology of several important dermatological diseases, including atopic dermatitis and psoriasis. Ca2+ influx plays an essential role in this process presumably mediated by different transient receptor potential (TRP) channels. However, investigating their individual role was hampered by the lack of specific stimulators or inhibitors. Because we have recently identified hyperforin as a specific TRPC6 activator, we investigated the contribution of TRPC6 to keratinocyte differentiation and proliferation. Like the endogenous differentiation stimulus high extracellular Ca2+ concentration ([Ca2+]o), hyperforin triggers differentiation in HaCaT cells and in primary cultures of human keratinocytes by inducing Ca2+ influx via TRPC6 channels and additional inhibition of proliferation. Knocking down TRPC6 channels prevents the induction of Ca2+- and hyperforin-induced differentiation. Importantly, TRPC6 activation is sufficient to induce keratinocyte differentiation similar to the physiological stimulus [Ca2+]o. Therefore, TRPC6 activation by hyperforin may represent a new innovative therapeutic strategy in skin disorders characterized by altered keratinocyte differentiation.


Molecular Neurobiology | 2012

Peripheral Mitochondrial Dysfunction in Alzheimer’s Disease: Focus on Lymphocytes

Kristina Leuner; Kathrin Schulz; Tanja Schütt; Johannes Pantel; David Prvulovic; Virginie Rhein; Egemen Savaskan; Christian Czech; Anne Eckert; Walter E. Müller

Alzheimer’s disease (AD) is the most common progressive neurodegenerative disease. Today, AD affects millions of people worldwide and the number of AD cases will increase with increased life expectancy. The AD brain is marked by severe neurodegeneration like the loss of synapses and neurons, atrophy and depletion of neurotransmitter systems in the hippocampus and cerebral cortex. Recent findings suggest that these pathological changes are causally induced by mitochondrial dysfunction and increased oxidative stress. These changes are not only observed in the brain of AD patients but also in the periphery. In this review, we discuss the potential role of elevated apoptosis, increased oxidative stress and especially mitochondrial dysfunction as peripheral markers for the detection of AD in blood cells especially in lymphocytes. We discuss recent not otherwise published findings on the level of complex activities of the respiratory chain comprising mitochondrial respiration and the mitochondrial membrane potential (MMP). We obtained decreased basal MMP levels in lymphocytes from AD patients as well as enhanced sensitivity to different complex inhibitors of the respiratory chain. These changes are in line with mitochondrial defects obtained in AD cell and animal models, and in post-mortem AD tissue. Importantly, these mitochondrial alterations where not only found in AD patients but also in patients with mild cognitive impairment (MCI). These new findings point to a relevance of mitochondrial function as an early peripheral marker for the detection of AD and MCI.


Molecular Pharmacology | 2010

Simple 2,4-Diacylphloroglucinols as Classic Transient Receptor Potential-6 Activators—Identification of a Novel Pharmacophore

Kristina Leuner; Jeanine Heiser; Swetlana Derksen; Mitko Mladenov; Christian J. Fehske; Rudolf Schubert; Maik Gollasch; Gisbert Schneider; Christian Harteneck; Shyam S. Chatterjee; Walter E. Müller

The naturally occurring acylated phloroglucinol derivative hyperforin was recently identified as the first specific canonical transient receptor potential-6 (TRPC6) activator. Hyperforin is the major antidepressant component of St. Johns wort, which mediates its antidepressant-like properties via TRPC6 channel activation. However, its pharmacophore moiety for activating TRPC6 channels is unknown. We hypothesized that the phloroglucinol moiety could be the essential pharmacophore of hyperforin and that its activity profile could be due to structural similarities with diacylglycerol (DAG), an endogenous nonselective activator of TRPC3, TRPC6, and TRPC7. Accordingly, a few 2-acyl and 2,4-diacylphloroglucinols were tested for their hyperforin-like activity profiles. We used a battery of experimental models to investigate all functional aspects of TRPC6 activation, including ion channel recordings, Ca2+ imaging, neurite outgrowth, and inhibition of synaptosomal uptake. Phloroglucinol itself was inactive in all of our assays, which was also the case for 2-acylphloroglucinols. For TRPC6 activation, the presence of two symmetrically acyl-substitutions with appropriate alkyl chains in the phloroglucinol moiety seems to be an essential prerequisite. Potencies of these compounds in all assays were comparable with that of hyperforin for activating the TRPC6 channel. Finally, using structure-based modeling techniques, we suggest a binding mode for hyperforin to TRPC6. Based on this modeling approach, we propose that DAG is able to activate TRPC3, TRPC6, and TRPC7 because of higher flexibility within the chemical structure of DAG compared with the rather rigid structures of hyperforin and the 2,4-diacylphloroglucinol derivatives.

Collaboration


Dive into the Kristina Leuner's collaboration.

Top Co-Authors

Avatar

Walter E. Müller

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher Kurz

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Gunter P. Eckert

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Schamim H. Eckert

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabel Scherping

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Kathrin Schulz

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Marina Jendrach

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge