Marina Jendrach
Goethe University Frankfurt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marina Jendrach.
Neurobiology of Aging | 2009
Susanne Hauptmann; Isabel Scherping; Stefan Dröse; Ulrich Brandt; Kathrin Schulz; Marina Jendrach; Kristina Leuner; Anne Eckert; Walter E. Müller
Recent evidence suggests mitochondrial dysfunction as a common early pathomechanism in Alzheimers disease integrating genetic factors related to enhanced amyloid-beta (Ass) production and tau-hyperphosphorylation with aging, as the most relevant sporadic risk factor. To further clarify the synergistic effects of aging and Ass pathology, we used isolated mitochondria of double Swedish and London mutant APP transgenic mice and of non-tg littermates. Pronounced mitochondrial dysfunction in adult Thy-1 APP mice, such as a drop of mitochondrial membrane potential and reduced ATP-levels already appeared at 3 months when elevated intracellular but not extracellular Ass deposits are present. Mitochondrial dysfunction was associated with higher levels of reactive oxygen species, an altered Bcl-xL/Bax ratio and reduction of COX IV activity. We observed significant decreases in state 3 respiration and FCCP-uncoupled respiration in non-tg mice after treatment with extracellular Ass. Similar deficits were seen only in aged Thy-1 APP mice, probably due to compensation within the respiratory chain in young animals. We conclude that Ass dependent mitochondrial dysfunction starts already at 3 months in this AD model before extracellular deposition of Ass and progression accelerates substantially with aging.
PLOS ONE | 2009
Suzana Gispert; Filomena Ricciardi; Alexander Kurz; Mekhman Azizov; Hans-Hermann Hoepken; Dorothea Becker; Wolfgang Voos; Kristina Leuner; Walter E. Müller; Alexei P. Kudin; Wolfram S. Kunz; Annabelle Zimmermann; Jochen Roeper; Dirk Wenzel; Marina Jendrach; Moisés García-Arencibia; Javier Fernández-Ruiz; Leslie Huber; Hermann Rohrer; Miguel Barrera; Andreas S. Reichert; Udo Rüb; Amy Chen; Robert L. Nussbaum; Georg Auburger
Background Parkinsons disease (PD) is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1) cause the recessive PARK6 variant of PD. Methodology/Principal Findings Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of α-synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. Conclusion Thus, aging Pink1−/− mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death.
Antioxidants & Redox Signaling | 2012
Kristina Leuner; Tanja Schütt; Christopher Kurz; Schamim H. Eckert; Carola Schiller; Angelo Occhipinti; Sören Mai; Marina Jendrach; Gunter P. Eckert; Shane E. Kruse; Richard D. Palmiter; Ulrich Brandt; Stephan Dröse; Ilka Wittig; Michael Willem; Christian Haass; Andreas S. Reichert; Walter E. Müller
AIMS Intracellular amyloid beta (Aβ) oligomers and extracellular Aβ plaques are key players in the progression of sporadic Alzheimers disease (AD). Still, the molecular signals triggering Aβ production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species (ROS) are sufficient to increase Aβ generation and thereby initiate a vicious cycle further impairing mitochondrial function. RESULTS Complex I and III dysfunction was induced in a cell model using the respiratory inhibitors rotenone and antimycin, resulting in mitochondrial dysfunction and enhanced ROS levels. Both treatments lead to elevated levels of Aβ. Presence of an antioxidant rescued mitochondrial function and reduced formation of Aβ, demonstrating that the observed effects depended on ROS. Conversely, cells overproducing Aβ showed impairment of mitochondrial function such as comprised mitochondrial respiration, strongly altered morphology, and reduced intracellular mobility of mitochondria. Again, the capability of these cells to generate Aβ was partly reduced by an antioxidant, indicating that Aβ formation was also ROS dependent. Moreover, mice with a genetic defect in complex I, or AD mice treated with a complex I inhibitor, showed enhanced Aβ levels in vivo. INNOVATION We show for the first time that mitochondrion-derived ROS are sufficient to trigger Aβ production in vitro and in vivo. CONCLUSION Several lines of evidence show that mitochondrion-derived ROS result in enhanced amyloidogenic amyloid precursor protein processing, and that Aβ itself leads to mitochondrial dysfunction and increased ROS levels. We propose that starting from mitochondrial dysfunction a vicious cycle is triggered that contributes to the pathogenesis of sporadic AD.
Journal of Cell Science | 2005
Daniel Becker; Christopher Blase; Juergen Bereiter-Hahn; Marina Jendrach
Tight regulation of the cell volume is important for the maintenance of cellular homeostasis. In a hypotonic environment, cells swell owing to osmosis. With many vertebrate cells, swelling is followed by an active reduction of volume, a process called regulatory volume decrease (RVD). A possible participant in RVD is the non-selective cation channel TRPV4, a member of the TRP superfamily that has been shown to react to hypotonic stimuli with a conductance for Ca2+. As a model for cell-volume regulation, we used a human keratinocyte cell line (HaCaT) that produces TRPV4 endogenously. When HaCaT cells were exposed to a hypotonic solution (200 mOsm) maximal swelling was followed by RVD. During swelling and volume regulation, a strong Ca2+ influx was measured. Gd3+, an inhibitor of TRPV4, blocked RVD of HaCaT cells and the accompanying rise of cytosolic Ca2+. To define the role of TRPV4 in volume regulation, a TRPV4-EGFP fusion protein was produced in CHO cells. CHO cells are unable to undergo RVD under hypotonic conditions and do not produce TRPV4 endogenously. Fluorescence imaging revealed that recombinant TRPV4 was localized to the cell membrane. Production of TRPV4 enabled CHO cells to undergo typical RVD after hypo-osmolarity-induced cell swelling. RVD of TRPV4-transfected CHO cells was significantly reduced by Gd3+ treatment or in Ca2+-free solution. Taken together, these results show a direct participation of TRPV4 in RVD.
Mitochondrion | 2008
Marina Jendrach; Sören Mai; Sandra Pohl; Monika Vöth; Jürgen Bereiter-Hahn
Cells are exposed during their life span to fluctuating levels of reactive oxygen species (ROS). To investigate the effects of a single ROS boost in vitro, human endothelial cells (HUVEC) were treated with one short-term dose of hydrogen peroxide. This treatment resulted in a short, dose-dependent ROS peak that caused transient changes in the mitochondrial morphology and fine structure, in the frequency of mitochondrial fission and fusion and in the mRNA levels of distinct fission and fusion factors. Treatment with a higher dose induced prolonged mtDNA damage; these cells exhibited a significantly shortened replicative lifespan, indicating dose-dependent effects of oxidative stress on mitochondria.
Journal of Cell Science | 2010
Sören Mai; Michael Klinkenberg; Georg Auburger; Jürgen Bereiter-Hahn; Marina Jendrach
Mitochondria display different morphologies, depending on cell type and physiological situation. In many senescent cell types, an extensive elongation of mitochondria occurs, implying that the increase of mitochondrial length in senescence could have a functional role. To test this hypothesis, human endothelial cells (HUVECs) were aged in vitro. Young HUVECs had tubular mitochondria, whereas senescent cells were characterized by long interconnected mitochondria. The change in mitochondrial morphology was caused by downregulation of the expression of Fis1 and Drp1, two proteins regulating mitochondrial fission. Targeted photodamage of mitochondria induced the formation of reactive oxygen species (ROS), which triggered mitochondrial fragmentation and loss of membrane potential in young cells, whereas senescent cells proved to be resistant. Alterations of the Fis1 and Drp1 expression levels also influenced the expression of the putative serine-threonine kinase PINK1, which is associated with the PARK6 variant of Parkinsons disease. Downregulation of PINK1 or overexpression of a PINK1 mutant (G309D) increased the sensitivity against ROS in young cells. These results indicate that there is a Drp1- and Fis1-induced, and PINK1-mediated protection mechanism in senescent cells, which, when compromised, could contribute to the age-related progression of Parkinsons disease and arteriosclerosis.
Mechanisms of Ageing and Development | 2005
Marina Jendrach; Sandra Pohl; Monika Vöth; Axel Kowald; Peter Hammerstein; Jürgen Bereiter-Hahn
Mitochondrial morphology is regulated in many cultured eukaryotic cells by fusion and fission of mitochondria. A tightly controlled balance between fission and fusion events is required to ensure normal mitochondrial and cellular functions. During ageing, mitochondria are undergoing significant changes on the functional and morphological level. The effect of ageing on fusion and fission of mitochondria and consequences of altered fission and fusion activity are still unknown although theoretical models on ageing consider the significance of these processes. Human umbilical vein endothelial cells (HUVECs) have been established as a cell culture model to follow mitochondrial activity and dysfunction during the ageing process. Mitochondria of old and postmitotic HUVECs showed distinct alterations in overall morphology and fine structure, and furthermore, loss of mitochondrial membrane potential. In parallel, a decrease of intact mitochondrial DNA (mtDNA) was observed. Fission and fusion activity of mitochondria were quantified in living cells. Mitochondria of old HUVECs showed a significant and equal decrease of both fusion and fission activity indicating that these processes are sensitive to ageing and could contribute to the accumulation of damaged mitochondria during ageing.
Autophagy | 2012
Sören Mai; Britta Muster; Jürgen Bereiter-Hahn; Marina Jendrach
Mitochondrial health is maintained by the quality control mechanisms of mitochondrial dynamics (fission and fusion) and mitophagy. Decline of these processes is thought to contribute to aging and neurodegenerative diseases. To investigate the role of mitochondrial quality control in aging on the cellular level, human umbilical vein endothelial cells (HUVEC) were subjected to mitochondria-targeted damage by combining staining of mitochondria and irradiation. This treatment induced a short boost of reactive oxygen species, which resulted in transient fragmentation of mitochondria followed by mitophagy, while mitochondrial dynamics were impaired. Furthermore, targeted mitochondrial damage upregulated autophagy factors LC3B, ATG5 and ATG12. Consequently these proteins were overexpressed in HUVEC as an in vitro aging model, which significantly enhanced the replicative life span up to 150% and the number of population doublings up to 200%, whereas overexpression of LAMP-1 did not alter the life span. Overexpression of LC3B, ATG5 and ATG12 resulted in an improved mitochondrial membrane potential, enhanced ATP production and generated anti-apoptotic effects, while ROS levels remained unchanged and the amount of oxidized proteins increased. Taken together, these data relate LC3B, ATG5 and ATG12 to mitochondrial quality control after oxidative damage, and to cellular longevity.
European Journal of Cell Biology | 2009
Daniel Becker; Jürgen Bereiter-Hahn; Marina Jendrach
Many vertebrate cells react to hypotonic conditions with swelling, followed by an active downregulation of the cell volume; a progress called regulatory volume decrease (RVD). While the actual process of volume decrease by loss of osmotically active molecules like K(+) and Cl(-), followed by water efflux has been extensively investigated, the signal for activation of RVD still remains obscure. Studies with different cell lines demonstrated a participation of the cation channel transient receptor potential vanilloid 4 (TRPV4) as well as the actin cytoskeleton in volume regulation. Therefore, we analyzed putative links between TRPV4 and F-actin in RVD in HaCaT keratinocytes and CHO cells. Laser scanning microscopy studies revealed a distinct colocalization of TRPV4 and actin in highly dynamic membrane structures, such as microvilli, filopodia and lamellipodia edges. After treatment of cells with the actin-destabilizing reagent latrunculin A, TRPV4 and F-actin no longer colocalized within the membrane. In accordance with these data, close interaction between TRPV4 and F-actin was revealed by FRAP and FRET studies. For functional analysis, CHO cells that endogenously do not express TRPV4, were transfected with recombinant TRPV4, which rendered them RVD-competent. Treatment with latrunculin A abolished both, RVD and the accompanying rise of [Ca(2+)](i) after hypotonic stress in TRPV4-transfected CHO cells. Taken together, our data demonstrate a functional interaction between TRPV4 and F-actin in sensing hypotonicity and the onset of RVD.
Biotechnology Journal | 2008
Jürgen Bereiter-Hahn; Monika Vöth; Sören Mai; Marina Jendrach
Mitochondrial components are continuously distributed throughout the whole chondriome of a cell by fusion and fission. Thus, a single mitochondrion represents a transient fraction of the chondriome. Mitochondrial dynamics are responsible for intracellular distribution and reaction of mitochondria to functional requirements. Dynamics occur on different levels: overall morphology, inner membrane–matrix compartment, turnover and rearrangements of mitochondrial proteins and DNA. Electron micrographs of serial sections of human umbilical vein endothelial cells reveal perinuclear mitochondria of extreme length and with branches in those cells that also have short peripheral mitochondria. Interactions of mitochondria with cytoskeletal elements are revealed in cells treated with cytochalasin D to destroy actin fibrillar structures or after disassembling microtubule by nocodazole. In the latter case mitochondria not only become immobilized, they also acquire a multiple ring structure. In F‐actin‐disturbed cells, motility (shape changes in particular) is increased and the mitochondria become elongated. Mechanisms of how F‐actin might render mitochondria immobile may involve dynamin‐related protein 1 (DRP1) or interaction with anion channels. This may be responsible for the lack of mitochondrial motility in senescent cells. Fusion between mitochondria revealed local fluctuations of mitochondrial red fluorescent protein (mtRFP), indicating novel fast inner membrane reorganizations. Mitochondrial dynamics result from a complex interplay between the molecular organization of the inner membrane–matrix complex and cytoskeletal elements outside.