Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristina Lövgren is active.

Publication


Featured researches published by Kristina Lövgren.


Breast Cancer Research | 2008

The CD44+/CD24- phenotype is enriched in basal-like breast tumors

Gabriella Honeth; Pär-Ola Bendahl; Markus Ringnér; Lao H. Saal; Sofia K. Gruvberger-Saal; Kristina Lövgren; Dorthe Grabau; Mårten Fernö; Åke Borg; Cecilia Hegardt

IntroductionHuman breast tumors are heterogeneous and consist of phenotypically diverse cells. Breast cancer cells with a CD44+/CD24- phenotype have been suggested to have tumor-initiating properties with stem cell-like and invasive features, although it is unclear whether their presence within a tumor has clinical implications. There is also a large heterogeneity between tumors, illustrated by reproducible stratification into various subtypes based on gene expression profiles or histopathological features. We have explored the prevalence of cells with different CD44/CD24 phenotypes within breast cancer subtypes.MethodsDouble-staining immunohistochemistry was used to quantify CD44 and CD24 expression in 240 human breast tumors for which information on other tumor markers and clinical characteristics was available. Gene expression data were also accessible for a cohort of the material.ResultsA considerable heterogeneity in CD44 and CD24 expression was seen both between and within tumors. A complete lack of both proteins was evident in 35% of the tumors, while 13% contained cells of more than one of the CD44+/CD24-, CD44-/CD24+ and CD44+/CD24+ phenotypes. CD44+/CD24- cells were detected in 31% of the tumors, ranging in proportion from only a few to close to 100% of tumor cells. The CD44+/CD24- phenotype was most common in the basal-like subgroup – characterized as negative for the estrogen and progesterone receptors as well as for HER2, and as positive for cytokeratin 5/14 and/or epidermal growth factor receptor, and particularly common in BRCA1 hereditary tumors, of which 94% contained CD44+/CD24- cells. The CD44+/CD24- phenotype was surprisingly scarce in HER2+ tumors, which had a predominantly CD24+ status. A CD44+/CD24- gene expression signature was generated, which included CD44 and α6-integrin (CD49f) among the top-ranked overexpressed genes.ConclusionWe demonstrate an association between basal-like and particularly BRCA1 hereditary breast cancer and the presence of CD44+/CD24- cells. Not all basal-like tumors and very few HER2+ tumors, however, contain CD44+/CD24- cells, emphasizing that a putative tumorigenic ability may not be confined to cells of this phenotype and that other breast cancer stem cell markers remain to be identified.


Nature Genetics | 2008

Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair

Lao H. Saal; Sofia K. Gruvberger-Saal; Camilla Persson; Kristina Lövgren; Johan Staaf; Göran Jönsson; Maira M. Pires; Matthew Maurer; Karolina Holm; Susan Koujak; Shivakumar Subramaniyam; Johan Vallon-Christersson; Haökan Olsson; Tao Su; Lorenzo Memeo; Thomas Ludwig; Stephen P. Ethier; Morten Krogh; Matthias Szabolcs; Vundavalli V. Murty; Jorma Isola; Hanina Hibshoosh; Ramon Parsons; Åke Borg

Basal-like breast cancer (BBC) is a subtype of breast cancer with poor prognosis. Inherited mutations of BRCA1, a cancer susceptibility gene involved in double-strand DNA break (DSB) repair, lead to breast cancers that are nearly always of the BBC subtype; however, the precise molecular lesions and oncogenic consequences of BRCA1 dysfunction are poorly understood. Here we show that heterozygous inactivation of the tumor suppressor gene Pten leads to the formation of basal-like mammary tumors in mice, and that loss of PTEN expression is significantly associated with the BBC subtype in human sporadic and BRCA1-associated hereditary breast cancers. In addition, we identify frequent gross PTEN mutations, involving intragenic chromosome breaks, inversions, deletions and micro copy number aberrations, specifically in BRCA1-deficient tumors. These data provide an example of a specific and recurrent oncogenic consequence of BRCA1-dependent dysfunction in DNA repair and provide insight into the pathogenesis of BBC with therapeutic implications. These findings also argue that obtaining an accurate census of genes mutated in cancer will require a systematic examination for gross gene rearrangements, particularly in tumors with deficient DSB repair.


Clinical Cancer Research | 2012

A Molecular Taxonomy for Urothelial Carcinoma

Gottfrid Sjödahl; Martin Lauss; Kristina Lövgren; Gunilla Chebil; Sigurdur Gudjonsson; Srinivas Veerla; Oliver Hultman Patschan; Mattias Aine; Mårten Fernö; Markus Ringnér; Wiking Månsson; Fredrik Liedberg; David Lindgren; Mattias Höglund

Purpose: Even though urothelial cancer is the fourth most common tumor type among males, progress in treatment has been scarce. A problem in day-to-day clinical practice is that precise assessment of individual tumors is still fairly uncertain; consequently efforts have been undertaken to complement tumor evaluation with molecular biomarkers. An extension of this approach would be to base tumor classification primarily on molecular features. Here, we present a molecular taxonomy for urothelial carcinoma based on integrated genomics. Experimental Design: We use gene expression profiles from 308 tumor cases to define five major urothelial carcinoma subtypes: urobasal A, genomically unstable, urobasal B, squamous cell carcinoma like, and an infiltrated class of tumors. Tumor subtypes were validated in three independent publically available data sets. The expression of 11 key genes was validated at the protein level by immunohistochemistry. Results: The subtypes show distinct clinical outcomes and differ with respect to expression of cell-cycle genes, receptor tyrosine kinases particularly FGFR3, ERBB2, and EGFR, cytokeratins, and cell adhesion genes, as well as with respect to FGFR3, PIK3CA, and TP53 mutation frequency. The molecular subtypes cut across pathologic classification, and class-defining gene signatures show coordinated expression irrespective of pathologic stage and grade, suggesting the molecular phenotypes as intrinsic properties of the tumors. Available data indicate that susceptibility to specific drugs is more likely to be associated with the molecular stratification than with pathologic classification. Conclusions: We anticipate that the molecular taxonomy will be useful in future clinical investigations. Clin Cancer Res; 18(12); 3377–86. ©2012 AACR.


BMC Cancer | 2011

CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers

Eleonor Olsson; Gabriella Honeth; Pär-Ola Bendahl; Lao H. Saal; Sofia K. Gruvberger-Saal; Markus Ringnér; Johan Vallon-Christersson; Göran Jönsson; Karolina Holm; Kristina Lövgren; Mårten Fernö; Dorthe Grabau; Åke Borg; Cecilia Hegardt

BackgroundThe CD44 cell adhesion molecule is aberrantly expressed in many breast tumors and has been implicated in the metastatic process as well as in the putative cancer stem cell (CSC) compartment. We aimed to investigate potential associations between alternatively spliced isoforms of CD44 and CSCs as well as to various breast cancer biomarkers and molecular subtypes.MethodsWe used q-RT-PCR and exon-exon spanning assays to analyze the expression of four alternatively spliced CD44 isoforms as well as the total expression of CD44 in 187 breast tumors and 13 cell lines. ALDH1 protein expression was determined by IHC on TMA.ResultsBreast cancer cell lines showed a heterogeneous expression pattern of the CD44 isoforms, which shifted considerably when cells were grown as mammospheres. Tumors characterized as positive for the CD44+/CD24- phenotype by immunohistochemistry were associated to all isoforms except the CD44 standard (CD44S) isoform, which lacks all variant exons. Conversely, tumors with strong expression of the CSC marker ALDH1 had elevated expression of CD44S. A high expression of the CD44v2-v10 isoform, which retain all variant exons, was correlated to positive steroid receptor status, low proliferation and luminal A subtype. The CD44v3-v10 isoform showed similar correlations, while high expression of CD44v8-v10 was correlated to positive EGFR, negative/low HER2 status and basal-like subtype. High expression of CD44S was associated with strong HER2 staining and also a subgroup of basal-like tumors. Unsupervised hierarchical cluster analysis of CD44 isoform expression data divided tumors into four main clusters, which showed significant correlations to molecular subtypes and differences in 10-year overall survival.ConclusionsWe demonstrate that individual CD44 isoforms can be associated to different breast cancer subtypes and clinical markers such as HER2, ER and PgR, which suggests involvement of CD44 splice variants in specific oncogenic signaling pathways. Efforts to link CD44 to CSCs and tumor progression should consider the expression of various CD44 isoforms.


PLOS ONE | 2012

Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma.

David Lindgren; Gottfrid Sjödahl; Martin Lauss; Johan Staaf; Gunilla Chebil; Kristina Lövgren; Sigurdur Gudjonsson; Fredrik Liedberg; Oliver Hultman Patschan; Wiking Månsson; Mårten Fernö; Mattias Höglund

Similar to other malignancies, urothelial carcinoma (UC) is characterized by specific recurrent chromosomal aberrations and gene mutations. However, the interconnection between specific genomic alterations, and how patterns of chromosomal alterations adhere to different molecular subgroups of UC, is less clear. We applied tiling resolution array CGH to 146 cases of UC and identified a number of regions harboring recurrent focal genomic amplifications and deletions. Several potential oncogenes were included in the amplified regions, including known oncogenes like E2F3, CCND1, and CCNE1, as well as new candidate genes, such as SETDB1 (1q21), and BCL2L1 (20q11). We next combined genome profiling with global gene expression, gene mutation, and protein expression data and identified two major genomic circuits operating in urothelial carcinoma. The first circuit was characterized by FGFR3 alterations, overexpression of CCND1, and 9q and CDKN2A deletions. The second circuit was defined by E3F3 amplifications and RB1 deletions, as well as gains of 5p, deletions at PTEN and 2q36, 16q, 20q, and elevated CDKN2A levels. TP53/MDM2 alterations were common for advanced tumors within the two circuits. Our data also suggest a possible RAS/RAF circuit. The tumors with worst prognosis showed a gene expression profile that indicated a keratinized phenotype. Taken together, our integrative approach revealed at least two separate networks of genomic alterations linked to the molecular diversity seen in UC, and that these circuits may reflect distinct pathways of tumor development.


American Journal of Pathology | 2013

Toward a Molecular Pathologic Classification of Urothelial Carcinoma

Gottfrid Sjödahl; Kristina Lövgren; Martin Lauss; Oliver Hultman Patschan; Sigurdur Gudjonsson; Gunilla Chebil; Mattias Aine; Pontus Eriksson; Wiking Månsson; David Lindgren; Mårten Fernö; Fredrik Liedberg; Mattias Höglund

We recently defined molecular subtypes of urothelial carcinomas according to whole genome gene expression. Herein we describe molecular pathologic characterization of the subtypes using 20 genes and IHC of 237 tumors. In addition to differences in expression levels, the subtypes show important differences in stratification of protein expression. The selected genes included biological features central to bladder cancer biology, eg, cell cycle activity, cellular architecture, cell-cell interactions, and key receptor tyrosine kinases. We show that the urobasal (Uro) A subtype shares features with normal urothelium such as keratin 5 (KRT5), P-cadherin (P-Cad), and epidermal growth factor receptor (EGFR) expression confined to basal cells, and cell cycle activity (CCNB1) restricted to the tumor-stroma interface. In contrast, the squamous cell cancer-like (SCCL) subtype uniformly expresses KRT5, P-Cad, EGFR, KRT14, and cell cycle genes throughout the tumor parenchyma. The genomically unstable subtype shows proliferation throughout the tumor parenchyma and high ERBB2 and E-Cad expression but absence of KRT5, P-Cad, and EGFR expression. UroB tumors demonstrate features shared by both UroA and SCCL subtypes. A major transition in tumor progression seems to be loss of dependency of stromal interaction for proliferation. We present a simple IHC/histology-based classifier that is easy to implement as a standard pathologic evaluation to differentiate the three major subtypes: urobasal, genomically unstable, and SCCL. These three major subtypes exhibit important prognostic differences.


Molecular Oncology | 2012

Global H3K27 trimethylation and EZH2 abundance in breast tumor subtypes.

Karolina Holm; Dorthe Grabau; Kristina Lövgren; Steina Aradottir; Sofia K. Gruvberger-Saal; Jillian Howlin; Lao H. Saal; Stephen P. Ethier; Pär-Ola Bendahl; Olle Stål; Per Malmström; Mårten Fernö; Lisa Rydén; Cecilia Hegardt; Åke Borg; Markus Ringnér

Polycomb repressive complex 2 (PRC2) and its core member enhancer of zeste homolog 2 (EZH2) mediate the epigenetic gene silencing mark: trimethylation of lysine 27 on histone 3 (H3K27me3). H3K27me3 is characteristic of the chromatin at genes involved in developmental regulation in undifferentiated cells. Overexpression of EZH2 has been found in several cancer types such as breast, prostate, melanoma and bladder cancer. Moreover, overexpression is associated with highly proliferative and aggressive types of breast and prostate tumors. We have analyzed the abundance of EZH2 and H3K27me3 using immunohistochemistry in two large and well‐characterized breast tumor data sets encompassing more than 400 tumors. The results have been analyzed in relation to the molecular subtypes of breast tumors (basal‐like, luminal A, luminal B, HER2‐enriched and normal‐like), as well as in subtypes defined by clinical markers (triple negative, ER+/HER2−/Ki67low, ER+/HER2−/Ki67high and HER2+), and were validated in representative breast cancer cell lines by western blot. We found significantly different expression of both EZH2 and H3K27me3 across all subtypes with high abundance of EZH2 in basal‐like, triple negative and HER2‐enriched tumors, and high H3K27me3 in luminal A, HER2‐enriched and normal‐like tumors. Intriguingly, the two markers show an inverse correlation, particularly for the basal‐like and triple negative tumors. Consequently, high expression of EZH2 was associated with poor distant disease‐free survival whereas high expression of H3K27me3 was associated with better survival. Additionally, none of 182 breast tumors was found to carry a previously described EZH2 mutation affecting Tyr641. Our observation that increased expression of EZH2 does not necessarily correlate with increased abundance of H3K27me3 supports the idea that EZH2 can have effects beyond epigenetic silencing of target genes in breast cancer.


Modern Pathology | 2010

The prognostic value of Ki67 is dependent on estrogen receptor status and histological grade in premenopausal patients with node-negative breast cancer.

Marie Klintman; Pär-Ola Bendahl; Dorthe Grabau; Kristina Lövgren; Per Malmström; Mårten Fernö

The aim of this study was to evaluate the prognostic value of Ki67 in relation to established prognostic factors in lymph node-negative breast cancer, and furthermore, whether the prognostic impact was dependent on estrogen receptor (ER) status and histological grade. In 200 premenopausal patients, with 5 years of follow-up, Ki67 was determined on tissue microarrays. In univariate analysis, Ki67 (≤20 vs >20%) was a prognostic factor for distant disease-free survival (hazard ratio: 2.7, 95% confidence interval: 1.3–5.4, P=0.005) and overall survival (hazard ratio: 4.9, 95% confidence interval: 1.7–14, P=0.003). When stratifying for ER status and histological grade, Ki67 was a significant prognostic factor for distant disease-free survival and overall survival only in the ER-positive group, and only in patients with histological grade 2, respectively. In multivariate analysis, human epidermal growth factor receptor 2 and age were independent prognostic factors for distant disease-free survival, whereas Ki67, histological grade, and tumor size were not. Ki67 was, however, an independent prognostic factor in the 87% of the patients who had not received adjuvant medical treatment. Agreement between the three readers was very good (κ-values: 0.83–0.88). Furthermore, Ki67 was a significant prognostic factor for all three investigators (hazard ratio: 2.7–3.2). This study shows that Ki67 is a prognostic factor in node-negative breast cancer. It is noteworthy that the prognostic information of Ki67 is restricted to ER-positive patients, and to patients with histological grade 2. Taken together, Ki67, as an easily assessed and reproducible proliferation factor, may be an alternative or complement to histological grade as a prognostic tool and for selection of adjuvant treatment.


European Urology | 2015

A Molecular Pathologic Framework for Risk Stratification of Stage T1 Urothelial Carcinoma

Oliver Hultman Patschan; Gottfrid Sjödahl; Gunilla Chebil; Kristina Lövgren; Martin Lauss; Sigurdur Gudjonsson; Petter Kollberg; Pontus Eriksson; Mattias Aine; Wiking Månsson; Mårten Fernö; Fredrik Liedberg; Mattias Höglund

BACKGROUND One third of patients with stage T1 urothelial carcinoma (UC) progress to muscle-invasive disease requiring radical surgery. Thus, reliable tools are needed for risk stratification of stage T1 UC. OBJECTIVE To investigate the extent to which stratification of stage T1 tumours into previously described molecular pathologic UC subtypes can provide improved information on tumour progression. DESIGN, SETTING, AND PARTICIPANTS A population-based cohort of 167 primary stage T1 UCs was characterised by immunohistochemistry and classified into the molecular subtypes urobasal (Uro, 32%), genomically unstable (GU, 58%), and squamous-cell-carcinoma-like (SCCL, 10%). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Progression-free survival using univariate and multivariate models. RESULTS AND LIMITATIONS Subtype classification was validated using nine additional markers with known subtype-specific expression. Analysis of mRNA expression of progression biomarkers revealed a strong association with molecular subtype. Kaplan-Meier analyses showed that the risk of progression was low for Uro tumours and high for GU/SCCL tumours. High progression risk scores were found only for GU/SCCL tumours. Clinical risk factors such as multifocality, concomitant carcinoma in situ, invasion depth, lymphovascular invasion, and high CD3(+) lymphocyte infiltration were observed almost exclusively in GU/SCCL cases. CONCLUSIONS Molecular subtypes Uro, GU, and SCCL were identified in an independent population-based cohort of stage T1 UCs. Biomarkers and clinical risk factors for progression were associated with molecular subtype. Rapidly progressing T1 tumours were of subtype GU or SCCL and had either a high progression risk score or an elevated CD3(+) cell count. PATIENT SUMMARY We show that classification of stage T1 urothelial carcinoma into molecular subtypes can improve the identification of patients with progressing tumours.


Epigenetics | 2012

DNA methylation analyses of urothelial carcinoma reveal distinct epigenetic subtypes and an association between gene copy number and methylation status

Martin Lauss; Mattias Aine; Gottfrid Sjödahl; Srinivas Veerla; Oliver Hultman Patschan; Sigurdur Gudjonsson; Gunilla Chebil; Kristina Lövgren; Mårten Fernö; Wiking Månsson; Fredrik Liedberg; Markus Ringnér; David Lindgren; Mattias Höglund

We assessed DNA methylation and copy number status of 27,000 CpGs in 149 urothelial carcinomas and integrated the findings with gene expression and mutation data. Methylation was associated with gene expression for 1,332 CpGs, of which 26% showed positive correlation with expression, i.e., high methylation and high gene expression levels. These positively correlated CpGs were part of specific transcription factor binding sites, such as sites for MYC and CREBP1, or located in gene bodies. Furthermore, we found genes with copy number gains, low expression and high methylation levels, revealing an association between methylation and copy number levels. This phenomenon was typically observed for developmental genes, such as HOX genes, and tumor suppressor genes. In contrast, we also identified genes with copy number gains, high expression and low methylation levels. This was for instance observed for some keratin genes. Tumor cases could be grouped into four subgroups, termed epitypes, by their DNA methylation profiles. One epitype was influenced by the presence of infiltrating immune cells, two epitypes were mainly composed of non-muscle invasive tumors, and the remaining epitype of muscle invasive tumors. The polycomb complex protein EZH2 that blocks differentiation in embryonic stem cells showed increased expression both at the mRNA and protein levels in the muscle invasive epitype, together with methylation of polycomb target genes and HOX genes. Our data highlights HOX gene silencing and EZH2 expression as mechanisms to promote a more undifferentiated and aggressive state in UC.

Collaboration


Dive into the Kristina Lövgren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge