Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristina M. Gutchess is active.

Publication


Featured researches published by Kristina M. Gutchess.


Nature Communications | 2016

Oxygen depletion recorded in upper waters of the glacial Southern Ocean

Zunli Lu; Babette Hoogakker; Claus Dieter Hillenbrand; Xiaoli Zhou; Ellen Thomas; Kristina M. Gutchess; Wanyi Lu; Luke Jones; Rosalind E. M. Rickaby

Oxygen depletion in the upper ocean is commonly associated with poor ventilation and storage of respired carbon, potentially linked to atmospheric CO2 levels. Iodine to calcium ratios (I/Ca) in recent planktonic foraminifera suggest that values less than ∼2.5 μmol mol−1 indicate the presence of O2-depleted water. Here we apply this proxy to estimate past dissolved oxygen concentrations in the near surface waters of the currently well-oxygenated Southern Ocean, which played a critical role in carbon sequestration during glacial times. A down-core planktonic I/Ca record from south of the Antarctic Polar Front (APF) suggests that minimum O2 concentrations in the upper ocean fell below 70 μmol kg−1 during the last two glacial periods, indicating persistent glacial O2 depletion at the heart of the carbon engine of the Earths climate system. These new estimates of past ocean oxygenation variability may assist in resolving mechanisms responsible for the much-debated ice-age atmospheric CO2 decline.


Science of The Total Environment | 2016

Chloride sources in urban and rural headwater catchments, central New York.

Kristina M. Gutchess; Li Jin; Laura K. Lautz; Stephen B. Shaw; Xiaoli Zhou; Zunli Lu

Road salt used as a deicing agent in winter months has become an emerging contaminant to streams and groundwater. In central New York, road salts are applied heavily during winter months. Recognizing potential sources of salinity to a river may reveal processes controlling the salinization of freshwater systems, with implications for future management practices. The Tioughnioga River, located in central New York, is a headwater of the Susquehanna River, which flows into the Chesapeake Bay. Salinity of the Tioughnioga River water has been increasing since the late 1930s. In this study, water samples were collected weekly at the East and West Branches of the Tioughnioga River from 2012 to 2014. We characterize natural and anthropogenic sources of salinity in the Tioughnioga River, using two independent approaches: (1) chloride to bromide ratios (Cl/Br) and (2) linear discriminant analysis. Ratios of Cl/Br suggest that road salt runoff influence is notable in both branches, but is more significant in the West Branch, consistent with a greater area of urban land. Linear discriminant analysis confirms the results of Cl/Br in the West Branch and further indicates presence of Appalachian Basin Brines in the East Branch, although their contribution may be volumetrically small. Longitudinal stream Cl concentration profiles indicate that sources of pollution are particularly concentrated around urban areas. Residence time of Cl in the watershed is estimated to be approximately 20 to 30years using a mixing model, suggesting that stream Cl concentrations likely will continue to rise for several decades.


Science | 2018

Late inception of a resiliently oxygenated upper ocean

Wanyi Lu; Andy Ridgwell; Ellen Thomas; Dalton S. Hardisty; Genming Luo; Matthew R. Saltzman; Benjamin C. Gill; Yanan Shen; Hong Fei Ling; Cole T. Edwards; Michael T. Whalen; Xiaoli Zhou; Kristina M. Gutchess; Li Jin; Rosalind E. M. Rickaby; Hugh C. Jenkyns; Timothy W. Lyons; Timothy M. Lenton; Lee R. Kump; Zunli Lu

The rise of oxygen To understand the evolution of the biosphere, we need to know how much oxygen was present in Earths atmosphere during most of the past 2.5 billion years. However, there are few proxies sensitive enough to quantify O2 at the low levels present until slightly less than 1 billion years ago. Lu et al. measured iodine/calcium ratios in marine carbonates, which are a proxy for dissolved oxygen concentrations in the upper ocean. They found that a major, but temporary, rise in atmospheric O2 occurred at around 400 million years ago and that O2 levels underwent a step change to near-modern values around 200 million years ago. Science, this issue p. 174 The I/Ca ratio in marine carbonates tracks atmospheric oxygen levels for the past 2.5 billion years. Rising oceanic and atmospheric oxygen levels through time have been crucial to enhanced habitability of surface Earth environments. Few redox proxies can track secular variations in dissolved oxygen concentrations around threshold levels for metazoan survival in the upper ocean. We present an extensive compilation of iodine-to-calcium ratios (I/Ca) in marine carbonates. Our record supports a major rise in the partial pressure of oxygen in the atmosphere at ~400 million years (Ma) ago and reveals a step change in the oxygenation of the upper ocean to relatively sustainable near-modern conditions at ~200 Ma ago. An Earth system model demonstrates that a shift in organic matter remineralization to greater depths, which may have been due to increasing size and biomineralization of eukaryotic plankton, likely drove the I/Ca signals at ~200 Ma ago.


Environmental Science & Technology | 2017

Long-Term Climatic and Anthropogenic Impacts on Streamwater Salinity in New York State: INCA Simulations Offer Cautious Optimism

Kristina M. Gutchess; Li Jin; José L. J. Ledesma; Jill Crossman; Christa Kelleher; Laura K. Lautz; Zunli Lu

The long-term application of road salts has led to a rise in surface water chloride (Cl-) concentrations. While models have been used to assess the potential future impacts of continued deicing practices, prior approaches have not incorporated changes in climate that are projected to impact hydrogeology in the 21st century. We use an INtegrated CAtchment (INCA) model to simulate Cl- concentrations in the Tioughnioga River watershed. The model was run over a baseline period (1961-1990) and climate simulations from a range of GCMs run over three 30-year intervals (2010-2039; 2040-2069; 2070-2099). Model projections suggest that Cl- concentrations in the two river branches will continue to rise for several decades, before beginning to decline around 2040-2069, with all GCM scenarios indicating reductions in snowfall and associated salt applications over the 21st century. The delay in stream response is most likely attributed to climate change and continued contribution of Cl- from aquifers. By 2100, surface water Cl- concentrations will decrease to below 1960s values. Catchments dominated by urban lands will experience a decrease in average surface water Cl-, although moderate compared to more rural catchments.


Archive | 2018

MODELING FUTURE NITROGEN DYNAMICS IN CHESAPEAKE BAY HEADWATERS

Kristina M. Gutchess; Li Jin; Christa Kelleher; Sarah H. Ledford; Laura K. Lautz; Zunli Lu


In supplement to: Lu, W et al. (submitted): Late inception of a resiliently oxygenated upper ocean. | 2018

Table S1) Phanerozoic carbonates sections

Wanyi Lu; Andy Ridgwell; Ellen Thomas; Dalton S. Hardisty; Genming Luo; Matthew R. Saltzman; Benjamin C. Gill; Yanan Shen; Hong-Fei Ling; Cole T. Edwards; Michael T. Whalen; Xiaoli Zhou; Kristina M. Gutchess; Li Jin; Rosalind E. M. Rickaby; Hugh C. Jenkyns; Timothy W. Lyons; Timothy M. Lenton; Lee R. Kump; Zunli Lu


In supplement to: Lu, W et al. (2018): Late inception of a resiliently oxygenated upper ocean. Science, eaar5372, https://doi.org/10.1126/science.aar5372 | 2018

(Table S2 ) I/Ca record of phanerozoic carbonates

Wanyi Lu; Andy Ridgwell; Ellen Thomas; Dalton S. Hardisty; Genming Luo; Matthew R. Saltzman; Benjamin C. Gill; Yanan Shen; Hong-Fei Ling; Cole T. Edwards; Michael T. Whalen; Xiaoli Zhou; Kristina M. Gutchess; Li Jin; Rosalind E. M. Rickaby; Hugh C. Jenkyns; Timothy W. Lyons; Timothy M. Lenton; Lee R. Kump; Zunli Lu


Joint 52nd Northeastern Annual Section and 51st North-Central Annual GSA Section Meeting - 2017 | 2017

EVALUATING THE NATURAL TRANSPORT PATHWAYS OF IODINE IN HEADWATER CATCHMENTS

Kristina M. Gutchess; Shannon R. Garvin; Li Jin; Wanyi Lu; Zeno F. Levy; Laura K. Lautz; Zunli Lu


Joint 52nd Northeastern Annual Section and 51st North-Central Annual GSA Section Meeting - 2017 | 2017

MODELING NITROGEN DYNAMICS IN THE TIOUGHNIOGA RIVER, NEW YORK

Li Jin; Kristina M. Gutchess; Zunli Lu


GSA Annual Meeting in Seattle, Washington, USA - 2017 | 2017

GROUNDWATER IODINE ACROSS NEW YORK STATE: POTENTIAL LINKAGE TO METHANE?

Shannon R. Garvin; Kristina M. Gutchess; Wanyi Lu; William M. Kappel; Laura K. Lautz; Zunli Lu

Collaboration


Dive into the Kristina M. Gutchess's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Jin

State University of New York at Cortland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andy Ridgwell

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christa Kelleher

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge