Kristoffer Kiil
Statens Serum Institut
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristoffer Kiil.
Mbio | 2014
Marc Stegger; Thierry Wirth; Paal S. Andersen; Robert Skov; Anna De Grassi; Patricia Martins Simões; Anne Tristan; Andreas Petersen; Maliha Aziz; Kristoffer Kiil; Ivana Cirkovic; Edet E. Udo; Rosa del Campo; Jaana Vuopio-Varkila; Norazah Ahmad; Sima Tokajian; Georg Peters; Frieder Schaumburg; Barbro Olsson-Liljequist; Michael Givskov; Elizabeth E. Driebe; Henrik Vigh; Adebayo Shittu; Nadjia Ramdani-Bougessa; Jean-Philippe Rasigade; Lance B. Price; François Vandenesch; Anders Rhod Larsen; Frédéric Laurent
ABSTRACT Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) was recognized in Europe and worldwide in the late 1990s. Within a decade, several genetically and geographically distinct CA-MRSA lineages carrying the small SCCmec type IV and V genetic elements and the Panton-Valentine leukocidin (PVL) emerged around the world. In Europe, the predominant CA-MRSA strain belongs to clonal complex 80 (CC80) and is resistant to kanamycin/amikacin and fusidic acid. CC80 was first reported in 1993 but was relatively rare until the late 1990s. It has since been identified throughout North Africa, the Middle East, and Europe, with recent sporadic reports in sub-Saharan Africa. While strongly associated with skin and soft tissue infections, it is rarely found among asymptomatic carriers. Methicillin-sensitive S. aureus (MSSA) CC80 strains are extremely rare except in sub-Saharan Africa. In the current study, we applied whole-genome sequencing to a global collection of both MSSA and MRSA CC80 isolates. Phylogenetic analyses strongly suggest that the European epidemic CA-MRSA lineage is derived from a PVL-positive MSSA ancestor from sub-Saharan Africa. Moreover, the tree topology suggests a single acquisition of both the SCCmec element and a plasmid encoding the fusidic acid resistance determinant. Four canonical SNPs distinguish the derived CA-MRSA lineage and include a nonsynonymous mutation in accessory gene regulator C (agrC). These changes were associated with a star-like expansion into Europe, the Middle East, and North Africa in the early 1990s, including multiple cases of cross-continent imports likely driven by human migrations. IMPORTANCE With increasing levels of CA-MRSA reported from most parts of the Western world, there is a great interest in understanding the origin and factors associated with the emergence of these epidemic lineages. To trace the origin, evolution, and dissemination pattern of the European CA-MRSA clone (CC80), we sequenced a global collection of strains of the S. aureus CC80 lineage. Our study determined that a single descendant of a PVL-positive methicillin-sensitive ancestor circulating in sub-Saharan Africa rose to become the dominant CA-MRSA clone in Europe, the Middle East, and North Africa. In the transition from a methicillin-susceptible lineage to a successful CA-MRSA clone, it simultaneously became resistant to fusidic acid, a widely used antibiotic for skin and soft tissue infections, thus demonstrating the importance of antibiotic selection in the success of this clone. This finding furthermore highlights the significance of horizontal gene acquisitions and underscores the combined importance of these factors for the success of CA-MRSA. With increasing levels of CA-MRSA reported from most parts of the Western world, there is a great interest in understanding the origin and factors associated with the emergence of these epidemic lineages. To trace the origin, evolution, and dissemination pattern of the European CA-MRSA clone (CC80), we sequenced a global collection of strains of the S. aureus CC80 lineage. Our study determined that a single descendant of a PVL-positive methicillin-sensitive ancestor circulating in sub-Saharan Africa rose to become the dominant CA-MRSA clone in Europe, the Middle East, and North Africa. In the transition from a methicillin-susceptible lineage to a successful CA-MRSA clone, it simultaneously became resistant to fusidic acid, a widely used antibiotic for skin and soft tissue infections, thus demonstrating the importance of antibiotic selection in the success of this clone. This finding furthermore highlights the significance of horizontal gene acquisitions and underscores the combined importance of these factors for the success of CA-MRSA.
Emerging Infectious Diseases | 2016
Anne Kvistholm Jensen; Jonas T. Björkman; Steen Ethelberg; Kristoffer Kiil; Michael Kemp; Eva Møller Nielsen
A clone of Listeria monocytogenes CC8 caused bacteremia in the elderly and a high incidence of listeriosis.
Eurosurveillance | 2017
Eva Litrup; Kristoffer Kiil; Anette M. Hammerum; Louise Roer; Eva Møller Nielsen; Mia Torpdahl
This report describes one Salmonella isolate harbouring both mcr-1 and mcr-3. We also found nine other Salmonella isolates positive for the plasmid-borne colistin resistance gene, mcr-3. The strains were isolated from patients in Denmark between 2009 and 2017 and five of the patients had travelled to Asia. In addition to mcr-3, all strains were found positive for blaTEM-1, strA, strB, sul2 and tet(A) or tet(B), and most strains were positive for blaCTX-M-55 and qnrS.
PLOS ONE | 2013
Marc Stegger; Maliha Aziz; Tomasz Chroboczek; Lance B. Price; Troels Ronco; Kristoffer Kiil; Robert Skov; Frédéric Laurent; Paal S. Andersen
Staphylococcus aureus ST291 has been reported as a homologue recombinant double locus variant of the livestock associated S. aureus ST398. However, whole genome sequencing show that ST291 is a unique genetic lineage with highly variable content within its accessory genome compared to both human and livestock associated genome sequenced CC398s.
International Journal of Medical Microbiology | 2017
Karen L. Nielsen; Marc Stegger; Kristoffer Kiil; Paul A. Godfrey; Michael Feldgarden; Berit Lilje; Paal Skytt Andersen; Niels Frimodt-Møller
The faecal flora is a common reservoir for urinary tract infection (UTI), and Escherichia coli (E. coli) is frequently found in this reservoir without causing extraintestinal infection. We investigated these E. coli reservoirs by whole-genome sequencing a large collection of E. coli from healthy controls (faecal), who had never previously had UTI, and from UTI patients (faecal and urinary) sampled from the same geographical area. We compared MLST types, phylogenetic relationship, accessory genome content and FimH type between patient and control faecal isolates as well as between UTI and faecal-only isolates, respectively. Comparison of the accessory genome of UTI isolates to faecal isolates revealed 35 gene families which were significantly more prevalent in the UTI isolates compared to the faecal isolates, although none of these were unique to one of the two groups. Of these 35, 22 belonged to a genomic island and three putatively belonged to a type VI secretion system (T6SS). MLST types and SNP phylogeny indicated no clustering of the UTI or faecal E. coli from patients distinct from the control faecal isolates, although there was an overrepresentation of UTI isolates belonging to clonal lineages CC73 and CC12. One combination of mutations in FimH, N70S/S78N, was significantly associated to UTI, while phylogenetic analysis of FimH and fimH identified no signs of distinct adaptation of UTI isolates compared to faecal-only isolates not causing UTI. In summary, the results showed that (i) healthy women who had never previously had UTI carried faecal E. coli which were overall closely related to UTI and faecal isolates from UTI patients; (ii) UTI isolates do not cluster separately from faecal-only isolates based on SNP analysis; and (iii) 22 gene families of a genomic island, putative T6SS proteins as well as specific metabolism and virulence associated proteins were significantly more common in UTI isolates compared to faecal-only isolates and (iv) evolution of fimH for these isolates was not linked to the clinical source of the isolates, apart from the mutation combination N70S/S78N, which was correlated to UTI isolates of phylogroup B2. Combined, these findings illustrate that faecal and UTI isolates, as well as faecal-only and faecal-UTI isolates, are closely related and can only be distinguished, if at all, by their accessory genome.
Genes | 2017
Sandra Christine Andersen; Mette Sofie Rousing Fachmann; Kristoffer Kiil; Eva Møller Nielsen; Jeffrey Hoorfar
In microbial food safety, molecular methods such as quantitative PCR (qPCR) and next-generation sequencing (NGS) of bacterial isolates can potentially be replaced by diagnostic shotgun metagenomics. However, the methods for pre-analytical sample preparation are often optimized for qPCR, and do not necessarily perform equally well for qPCR and sequencing. The present study investigates, through screening of methods, whether qPCR can be used as an indicator for the optimization of sample preparation for NGS-based shotgun metagenomics with a diagnostic focus. This was used on human fecal samples spiked with 103 or 106 colony-forming units (CFU)/g Campylobacter jejuni, as well as porcine fecal samples spiked with 103 or 106 CFU/g Salmonella typhimurium. DNA was extracted from the samples using variations of two widely used kits. The following quality parameters were measured: DNA concentration, qPCR, DNA fragmentation during library preparation, amount of DNA available for sequencing, amount of sequencing data, distribution of data between samples in a batch, and data insert size; none showed any correlation with the target ratio of the spiking organism detected in sequencing data. Surprisingly, diagnostic metagenomics can have better detection sensitivity than qPCR for samples spiked with 103 CFU/g C. jejuni. The study also showed that qPCR and sequencing results may be different due to inhibition in one of the methods. In conclusion, qPCR cannot uncritically be used as an indicator for the optimization of sample preparation for diagnostic metagenomics.
bioRxiv | 2018
Kristoffer Kiil; Mark Østerlund
We present CleanRecomb, a tool to quickly filter a SNP matrix for likely recombination events. Method The method evaluates segments with identical SNP profiles over the genome, based on the assumption that SNPs in the absense of recombination events are uniformly distributed across the genome. The method is evaluated on a set of 9 ST200 E. coli genome sequences. Results The detected recombination events coincide with regions of elevated SNP density.
bioRxiv | 2018
Kim Ng; Thor Bech Johannesen; Mark Østerlund; Kristoffer Kiil; Paal Skytt Andersen; Marc Stegger
Whole-genome sequencing is becoming the method of choice but provides redundant data for many tasks. ReadFilter (https://github.com/ssi-dk/serum_readfilter) is offered as a way to improve run time of these tasks by rapidly filtering reads against user-specified sequences in order to work with a small fraction of original reads while maintaining accuracy. This can noticeably reduce mapping time and substantially reduce de novo assembly time.
Clinical Infectious Diseases | 2016
Anne Kvistholm Jensen; Eva Møller Nielsen; Jonas T. Björkman; Tenna Jensen; Luise Müller; Søren Persson; Gitte Bjerager; Annette Perge; Tyra Grove Krause; Kristoffer Kiil; Gitte Sørensen; Jens Kirk Andersen; Kåre Mølbak; Steen Ethelberg
EFSA Supporting Publications | 2017
Eva Møller Nielsen; Jonas T. Björkman; Kristoffer Kiil; Kathie Grant; Tim Dallman; Anaïs Painset; Corinne Amar; Sophie Roussel; Laurent Guillier; Benjamin Félix; Ovidiu Rotariu; Francisco J. Pérez-Reche; Ken J. Forbes; Norval J. C. Strachan