Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristopher M. Paolino is active.

Publication


Featured researches published by Kristopher M. Paolino.


The New England Journal of Medicine | 2017

A Recombinant Vesicular Stomatitis Virus Ebola Vaccine - Preliminary Report.

Jason Regules; John Beigel; Kristopher M. Paolino; Jocelyn Voell; Amy R. Castellano; Paula Muñoz; James E. Moon; Richard C. Ruck; Jason W. Bennett; Patrick S. Twomey; Ramiro L. Gutiérrez; Shon Remich; Holly R. Hack; Meagan L. Wisniewski; Matthew Josleyn; Steven A. Kwilas; Nicole M. Van Deusen; Olivier Tshiani Mbaya; Yan Zhou; Daphne Stanley; Robin L. Bliss; Deborah Cebrik; Kirsten S. Smith; Meng Shi; Julie E. Ledgerwood; Barney S. Graham; Nancy J. Sullivan; Linda L. Jagodzinski; Sheila A. Peel; Judie B. Alimonti

Background The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication‐competent, recombinant vesicular stomatitis virus (rVSV)–based vaccine candidate designed to prevent EVD. Methods We conducted two phase 1, placebo‐controlled, double‐blind, dose‐escalation trials of an rVSV‐based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV‐ZEBOV vaccine (3 million plaque‐forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. Results The most common adverse events were injection‐site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme‐linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV‐Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. Conclusions This Ebola vaccine candidate elicited anti‐Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses. (Funded by the National Institutes of Health and others; rVSV&Dgr;G‐ZEBOV‐GP ClinicalTrials.gov numbers, NCT02269423 and NCT02280408.)


Clinical Infectious Diseases | 2012

Invasive mold infections following combat-related injuries.

Tyler Warkentien; Carlos J. Rodriguez; Bradley A. Lloyd; Justin Wells; Amy C. Weintrob; James R. Dunne; Anuradha Ganesan; Ping Li; William P. Bradley; Lakisha J. Gaskins; Françoise Seillier-Moiseiwitsch; Clinton K. Murray; Eugene V. Millar; Bryan Keenan; Kristopher M. Paolino; Mark E. Fleming; Duane R. Hospenthal; Glenn W. Wortmann; Michael L. Landrum; Mark G. Kortepeter; David R. Tribble

BACKGROUND Major advances in combat casualty care have led to increased survival of patients with complex extremity trauma. Invasive fungal wound infections (IFIs) are an uncommon, but increasingly recognized, complication following trauma that require greater understanding of risk factors and clinical findings to reduce morbidity. METHODS The patient population includes US military personnel injured during combat from June 2009 through December 2010. Case definition required wound necrosis on successive debridements with IFI evidence by histopathology and/or microbiology (Candida spp excluded). Case finding and data collected through the Trauma Infectious Disease Outcomes Study utilized trauma registry, hospital records or operative reports, and pathologist review of histopathology specimens. RESULTS A total of 37 cases were identified: proven (angioinvasion, n=20), probable (nonvascular tissue invasion, n=4), and possible (positive fungal culture without histopathological evidence, n=13). In the last quarter surveyed, rates reached 3.5% of trauma admissions. Common findings include blast injury (100%) during foot patrol (92%) occurring in southern Afghanistan (94%) with lower extremity amputation (80%) and large volume blood transfusion (97.2%). Mold isolates were recovered in 83% of cases (order Mucorales, n=16; Aspergillus spp, n=16; Fusarium spp, n=9), commonly with multiple mold species among infected wounds (28%). Clinical outcomes included 3 related deaths (8.1%), frequent debridements (median, 11 cases), and amputation revisions (58%). CONCLUSIONS IFIs are an emerging trauma-related infection leading to significant morbidity. Early identification, using common characteristics of patient injury profile and tissue-based diagnosis, should be accompanied by aggressive surgical and antifungal therapy (liposomal amphotericin B and a broad-spectrum triazole pending mycology results) among patients with suspicious wounds.


JCI insight | 2017

Protection against Plasmodium falciparum malaria by PfSPZ Vaccine

Judith E. Epstein; Kristopher M. Paolino; Thomas L. Richie; Martha Sedegah; Alexandra Singer; Adam Ruben; Sumana Chakravarty; April Stafford; Richard C. Ruck; Abraham G. Eappen; Tao Li; Peter F. Billingsley; Anita Manoj; Joana C. Silva; Kara A. Moser; Robin Nielsen; Donna Tosh; Susan Cicatelli; Harini Ganeshan; Jessica Case; Debbie Padilla; Silas A. Davidson; Lindsey S Garver; Elizabeth Saverino; Tooba Murshedkar; Anusha Gunasekera; Patrick S. Twomey; Sharina Reyes; James E. Moon; Eric R. James

BACKGROUND: A radiation-attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) malaria vaccine, PfSPZ Vaccine, protected 6 of 6 subjects (100%) against homologous Pf (same strain as in the vaccine) controlled human malaria infection (CHMI) 3 weeks after 5 doses administered intravenously. The next step was to assess protective efficacy against heterologous Pf (different from Pf in the vaccine), after fewer doses, and at 24 weeks. METHODS: The trial assessed tolerability, safety, immunogenicity, and protective efficacy of direct venous inoculation (DVI) of 3 or 5 doses of PfSPZ Vaccine in non-immune subjects. RESULTS: Three weeks after final immunization, 5 doses of 2.7 × 105 PfSPZ protected 12 of 13 recipients (92.3% [95% CI: 48.0, 99.8]) against homologous CHMI and 4 of 5 (80.0% [10.4, 99.5]) against heterologous CHMI; 3 doses of 4.5 × 105 PfSPZ protected 13 of 15 (86.7% [35.9, 98.3]) against homologous CHMI. Twenty-four weeks after final immunization, the 5-dose regimen protected 7 of 10 (70.0% [17.3, 93.3]) against homologous and 1 of 10 (10.0% [-35.8, 45.6]) against heterologous CHMI; the 3-dose regimen protected 8 of 14 (57.1% [21.5, 76.6]) against homologous CHMI. All 22 controls developed Pf parasitemia. PfSPZ Vaccine was well tolerated, safe, and easy to administer. No antibody or T cell responses correlated with protection. CONCLUSIONS: We have demonstrated for the first time to our knowledge that PfSPZ Vaccine can protect against a 3-week heterologous CHMI in a limited group of malaria-naive adult subjects. A 3-dose regimen protected against both 3-week and 24-week homologous CHMI (87% and 57%, respectively) in this population. These results provide a foundation for developing an optimized immunization regimen for preventing malaria. TRIAL REGISTRATION: ClinicalTrials.gov NCT02215707. FUNDING: Support was provided through the US Army Medical Research and Development Command, Military Infectious Diseases Research Program, and the Naval Medical Research Centers Advanced Medical Development Program.


PLOS ONE | 2015

Ad35.CS.01-RTS,S/AS01 Heterologous Prime Boost Vaccine Efficacy against Sporozoite Challenge in Healthy Malaria-Naïve Adults.

Christian F. Ockenhouse; Jason Regules; Donna Tosh; Jessica Cowden; April K. Kathcart; James F. Cummings; Kristopher M. Paolino; James E. Moon; Jack Komisar; Edwin Kamau; Thomas K Oliver; Austin Chhoeu; Jitta Murphy; Kirsten E. Lyke; Matthew B. Laurens; Ashley Birkett; Cynthia R Lee; Rich Weltzin; Ulrike Wille-Reece; Martha Sedegah; Jenny Hendriks; Isabella Versteege; Maria Grazia Pau; Jerold Sadoff; Yannick Vanloubbeeck; Marc Lievens; Dirk Heerwegh; Philippe Moris; Yolanda Guerra Mendoza; Erik Jongert

Methods In an observer blind, phase 2 trial, 55 adults were randomized to receive one dose of Ad35.CS.01 vaccine followed by two doses of RTS,S/AS01 (ARR-group) or three doses of RTS,S/AS01 (RRR-group) at months 0, 1, 2 followed by controlled human malaria infection. Results ARR and RRR vaccine regimens were well tolerated. Efficacy of ARR and RRR groups after controlled human malaria infection was 44% (95% confidence interval 21%-60%) and 52% (25%-70%), respectively. The RRR-group had greater anti-CS specific IgG titers than did the ARR-group. There were higher numbers of CS-specific CD4 T-cells expressing > 2 cytokine/activation markers and more ex vivo IFN-γ enzyme-linked immunospots in the ARR-group than the RRR-group. Protected subjects had higher CS-specific IgG titers than non-protected subjects (geometric mean titer, 120.8 vs 51.8 EU/ml, respectively; P = .001). Conclusions An increase in vaccine efficacy of ARR-group over RRR-group was not achieved. Future strategies to improve upon RTS,S-induced protection may need to utilize alternative highly immunogenic prime-boost regimens and/or additional target antigens. Trial Registration ClinicalTrials.gov NCT01366534


Military Medicine | 2012

Invasive fungal infections following combat-related injury.

Kristopher M. Paolino; James A. Henry; Duane R. Hospenthal; Glenn W. Wortmann; Joshua D. Hartzell

Invasive mold infections are a rare complication of traumatic wounds. We examined the incidence and outcomes of these infections in combat wounds. A retrospective chart review from March 2002 through July 2008 of U.S. soldiers returning from Iraq and Afghanistan with traumatic wounds was performed. A confirmed fungal wound infection was defined as growth of a known pathogenic mold and visualization of fungal elements on histopathology. Six cases were identified for an incidence of 0.4 cases/1,000 admissions. The incidence of invasive mold infections increased over time (p = 0.008) with a peak of 5.2 cases/1,000 admissions in 2007. Isolated molds included Aspergillus (n = 4), Bipolaris (n = 2), and 1 each Mucor and Absidia. All patients were male with a mean age of 22. Blast (n = 5) and gunshot wound (n = 1) were the sources of injury. All patients had fever (mean 39.4 degrees C) and leukocytosis (mean white blood cell count 25 x 10(3)/microL). The average acute physiology and chronic health evaluation II score was 22. All patients received antifungal agents, surgical debridement, and 3 required amputation revision. Average length of stay was 97 days. There were no deaths. Invasive mold infections are a rare complication of combat wounds but are associated with significant morbidity and may be increasing in frequency.


The Journal of Infectious Diseases | 2016

Fractional Third and Fourth Dose of RTS,S/AS01 Malaria Candidate Vaccine: A Phase 2a Controlled Human Malaria Parasite Infection and Immunogenicity Study

Jason A. Regules; Susan Cicatelli; Jason W. Bennett; Kristopher M. Paolino; Patrick S. Twomey; James E. Moon; April K. Kathcart; Kevin Hauns; Jack Komisar; Aziz N. Qabar; Silas A. Davidson; Sheetij Dutta; Matthew E. Griffith; Charles Magee; Mariusz Wojnarski; Jeffrey R. Livezey; Adrian T. Kress; Paige E. Waterman; Erik Jongert; Ulrike Wille-Reece; Wayne Volkmuth; Daniel Emerling; William H. Robinson; Marc Lievens; Danielle Morelle; Cynthia K. Lee; Bebi Yassin-Rajkumar; Richard Weltzin; Joe Cohen; Robert Paris

BACKGROUND Three full doses of RTS,S/AS01 malaria vaccine provides partial protection against controlled human malaria parasite infection (CHMI) and natural exposure. Immunization regimens, including a delayed fractional third dose, were assessed for potential increased protection against malaria and immunologic responses. METHODS In a phase 2a, controlled, open-label, study of healthy malaria-naive adults, 16 subjects vaccinated with a 0-, 1-, and 2-month full-dose regimen (012M) and 30 subjects who received a 0-, 1-, and 7-month regimen, including a fractional third dose (Fx017M), underwent CHMI 3 weeks after the last dose. Plasmablast heavy and light chain immunoglobulin messenger RNA sequencing and antibody avidity were evaluated. Protection against repeat CHMI was evaluated after 8 months. RESULTS A total of 26 of 30 subjects in the Fx017M group (vaccine efficacy [VE], 86.7% [95% confidence interval [CI], 66.8%-94.6%]; P < .0001) and 10 of 16 in the 012M group (VE, 62.5% [95% CI, 29.4%-80.1%]; P = .0009) were protected against infection, and protection differed between schedules (P = .040, by the log rank test). The fractional dose boosting increased antibody somatic hypermutation and avidity and sustained high protection upon rechallenge. DISCUSSIONS A delayed third fractional vaccine dose improved immunogenicity and protection against infection. Optimization of the RTS,S/AS01 immunization regimen may lead to improved approaches against malaria. CLINICAL TRIALS REGISTRATION NCT01857869.


Emerging Infectious Diseases | 2015

Health Care Response to CCHF in US Soldier and Nosocomial Transmission to Health Care Providers, Germany, 2009

Nicholas G. Conger; Kristopher M. Paolino; Erik C. Osborn; Janice M. Rusnak; Stephan Günther; Jane Pool; Pierre E. Rollin; Patrick F. Allan; Jonas Schmidt-Chanasit; Toni Rieger; Mark G. Kortepeter

Early recognition and implementation of appropriate infection control measures were effective in preventing further transmission.


PLOS Neglected Tropical Diseases | 2016

Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy

Jason W. Bennett; Anjali Yadava; Donna Tosh; Jetsumon Sattabongkot; Jack Komisar; Lisa A. Ware; William F. McCarthy; Jessica Cowden; Jason Regules; Michele Spring; Kristopher M. Paolino; Joshua D. Hartzell; James F. Cummings; Thomas L. Richie; Joanne M. Lumsden; Edwin Kamau; Jittawadee Murphy; Cynthia Lee; Falgunee K. Parekh; Ashley J. Birkett; Joe Cohen; W. Ripley Ballou; Mark E. Polhemus; Yannick Vanloubbeeck; Johan Vekemans; Christian F. Ockenhouse

Background A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use. Methods We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15μg, 30μg, or 60μg respectively of VMP001, all formulated in 500μL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls. Results The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period. Significance This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials.


Scientific Reports | 2016

Circulating follicular T helper cells and cytokine profile in humans following vaccination with the rVSV-ZEBOV Ebola vaccine

Fouzia Farooq; Kevin Beck; Kristopher M. Paolino; Revell Phillips; Norman C. Waters; Jason Regules; Elke S. Bergmann-Leitner

The most recent Zaire Ebolavirus (ZEBOV) outbreak was the largest and most widespread in recorded history, emphasizing the need for an effective vaccine. Here, we analyzed human cellular immune responses induced by a single dose of the rVSV-ZEBOV vaccine candidate, which showed significant protective efficacy in endemic populations in Guinea. This is the first in-depth characterization of ZEBOV-GP specific, circulating follicular T cells (cTfh). Since antibody titers correlated with protection in preclinical models of ZEBOV infection, Tfh were predicted to correlate with protection. Indeed, the ZEBOV-specific cTfh data correlated with antibody titers in human vaccines and unexpectedly with the Tfh17 subset. The combination of two cutting edge technologies allowed the immuno-profiling of rare cell populations and may help elucidate correlates of protection for a variety of vaccines.


American Journal of Tropical Medicine and Hygiene | 2017

Phase 1 Randomized Study of a Tetravalent Dengue Purified Inactivated Vaccine in Healthy Adults in the United States

Alexander C. Schmidt; Leyi Lin; Luis J. Martinez; Richard C. Ruck; Kenneth H. Eckels; Alix Collard; Rafael De La Barrera; Kristopher M. Paolino; Jean-François Toussaint; Edith Lepine; Bruce L. Innis; Richard G. Jarman; Stephen J. Thomas

The safety and immunogenicity of four formulations of an investigational tetravalent dengue purified inactivated vaccine (DPIV), formulated at 1 or 4 μg with aluminum hydroxide (alum) or at 1 μg with an adjuvant system (AS01E or AS03B), were evaluated in a first-time-in-human, placebo-controlled, randomized, observer-blind, phase 1 trial in the continental United States. Two doses of vaccine or placebo were administered intramuscularly 4 weeks apart to 100 healthy adults 18–39 years of age, randomized 1:1:1:1:1 to receive one of four DPIV formulations or saline placebo. The response to a third dose was evaluated in a subset of nine participants remote from primary vaccination. Humoral immunogenicity was assessed using a 50% microneutralization assay. All DPIV formulations were well tolerated. No vaccine-related serious adverse events were observed through 12 months after the second vaccine dose. In all DPIV groups, geometric mean antibody titers peaked at Day 56, waned through 6 months after the second vaccine dose, and then stabilized. In the nine subjects where boosting was evaluated, a strong anamnestic response was observed. These results support continuation of the clinical development of this dengue vaccine candidate (clinicaltrials.gov: NCT01666652).

Collaboration


Dive into the Kristopher M. Paolino's collaboration.

Top Co-Authors

Avatar

James E. Moon

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Jason Regules

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Donna Tosh

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Jack Komisar

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Jason W. Bennett

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Mark G. Kortepeter

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

April K. Kathcart

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Christian F. Ockenhouse

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Edwin Kamau

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Glenn W. Wortmann

Walter Reed Army Institute of Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge