Kritsanai Yingyuen
Medical Corps
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kritsanai Yingyuen.
Antimicrobial Agents and Chemotherapy | 2005
Harald Noedl; Jan Bronnert; Kritsanai Yingyuen; Bernhard Attlmayr; Herwig Kollaritsch; Mark M. Fukuda
ABSTRACT A simple double-site sandwich enzyme-linked immunosorbent assay (ELISA) for Plasmodium falciparum in vitro drug sensitivity tests based on measuring histidine-rich protein 2 (HRP2) is presented. The ELISA uses two commercial monoclonal antibodies and provides a drastically cheaper alternative to the test kits previously used in the HRP2 drug sensitivity test. The assay is simple to establish and perform. The sensitivity is comparable and the drug sensitivity results very closely match those obtained with the commercial ELISA kits (R2 = 0.979; P < 0.001; mean log difference at the 50% inhibitory concentration = 0.07).
Antimicrobial Agents and Chemotherapy | 2007
Harald Noedl; Srivicha Krudsood; Wattana Leowattana; Noppadon Tangpukdee; Wipa Thanachartwet; Sornchai Looareesuwan; Robert Scott Miller; Mark M. Fukuda; Krisada Jongsakul; Kritsanai Yingyuen; Sabaithip Sriwichai; Colin Ohrt; Charles Knirsch
ABSTRACT Azithromycin when used in combination with faster-acting antimalarials has proven efficacious in treating Plasmodium falciparum malaria in phase 2 clinical trials. The aim of this study was to establish optimal combination ratios for azithromycin in combination with either dihydroartemisinin or quinine, to determine the clinical correlates of in vitro drug sensitivity for these compounds, and to assess the cross-sensitivity patterns. Seventy-three fresh P. falciparum isolates originating from patients from the western border regions of Thailand were successfully tested for their drug susceptibility in a histidine-rich protein 2 (HRP2) assay. With overall mean fractional inhibitory concentrations of 0.84 (95% confidence interval [CI] = 0.77 to 1.08) and 0.78 (95% CI = 0.72 to 0.98), the interactions between azithromycin and dihydroartemisinin, as well as quinine, were classified as additive, with a tendency toward synergism. The strongest tendency toward synergy was seen with a combination ratio of 1:547 for the combination with dihydroartemisinin and 1:44 with quinine. The geometric mean 50% inhibitory concentration (IC50) of azithromycin was 2,570.3 (95% CI = 2,175.58 to 3,036.58) ng/ml. The IC50s for mefloquine, quinine, and chloroquine were 11.42, 64.4, and 54.4 ng/ml, respectively, suggesting a relatively high level of background resistance in this patient population. Distinct correlations (R = 0.53; P = 0.001) between quinine in vitro results and parasite clearance may indicate a compromised sensitivity to this drug. The correlation with dihydroartemisinin data was weaker (R = 0.34; P = 0.038), and no such correlation was observed for azithromycin. Our in vitro data confirm that azithromycin in combination with artemisinin derivatives or quinine exerts additive to synergistic interactions, shows no cross-sensitivity with traditional antimalarials, and has substantial antimalarial activity on its own.
Antimicrobial Agents and Chemotherapy | 2015
Suwanna Chaorattanakawee; David L. Saunders; Darapiseth Sea; Nitima Chanarat; Kritsanai Yingyuen; Siratchana Sundrakes; Piyaporn Saingam; Nillawan Buathong; Sabaithip Sriwichai; Soklyda Chann; Youry Se; You Yom; Thay Kheng Heng; Nareth Kong; Worachet Kuntawunginn; Kuntida Tangthongchaiwiriya; Christopher G. Jacob; Shannon Takala-Harrison; Christopher V. Plowe; Jessica T. Lin; Char Meng Chuor; Satharath Prom; Stuart D. Tyner; Panita Gosi; Paktiya Teja-Isavadharm; Chanthap Lon; Charlotte A. Lanteri
ABSTRACT Cambodias first-line artemisinin combination therapy, dihydroartemisinin-piperaquine (DHA-PPQ), is no longer sufficiently curative against multidrug-resistant Plasmodium falciparum malaria at some Thai-Cambodian border regions. We report recent (2008 to 2013) drug resistance trends in 753 isolates from northern, western, and southern Cambodia by surveying for ex vivo drug susceptibility and molecular drug resistance markers to guide the selection of an effective alternative to DHA-PPQ. Over the last 3 study years, PPQ susceptibility declined dramatically (geomean 50% inhibitory concentration [IC50] increased from 12.8 to 29.6 nM), while mefloquine (MQ) sensitivity doubled (67.1 to 26 nM) in northern Cambodia. These changes in drug susceptibility were significantly associated with a decreased prevalence of P. falciparum multidrug resistance 1 gene (Pfmdr1) multiple copy isolates and coincided with the timing of replacing artesunate-mefloquine (AS-MQ) with DHA-PPQ as the first-line therapy. Widespread chloroquine resistance was suggested by all isolates being of the P. falciparum chloroquine resistance transporter gene CVIET haplotype. Nearly all isolates collected from the most recent years had P. falciparum kelch13 mutations, indicative of artemisinin resistance. Ex vivo bioassay measurements of antimalarial activity in plasma indicated 20% of patients recently took antimalarials, and their plasma had activity (median of 49.8 nM DHA equivalents) suggestive of substantial in vivo drug pressure. Overall, our findings suggest DHA-PPQ failures are associated with emerging PPQ resistance in a background of artemisinin resistance. The observed connection between drug policy changes and significant reduction in PPQ susceptibility with mitigation of MQ resistance supports reintroduction of AS-MQ, in conjunction with monitoring of the P. falciparum mdr1 copy number, as a stop-gap measure in areas of DHA-PPQ failure.
Malaria Journal | 2013
Suwanna Chaorattanakawee; Stuart D. Tyner; Chanthap Lon; Kritsanai Yingyuen; Wiriya Ruttvisutinunt; Siratchana Sundrakes; Piyaporn Sai-gnam; Jacob D. Johnson; Douglas S. Walsh; David L. Saunders; Charlotte A. Lanteri
BackgroundPerformance of the histidine-rich protein-2 enzyme-linked immunosorbent assay (HRP-2 ELISA) and malaria SYBR Green I fluorescence (MSF) drug sensitivity tests were directly compared using Plasmodium falciparum reference strains and fresh ex vivo isolates from Cambodia against a panel of standard anti-malarials. The objective was to determine which of these two common assays is more appropriate for studying drug susceptibility of “immediate ex vivo” (IEV) isolates, analysed without culture adaption, in a region of relatively low malaria transmission.MethodsUsing the HRP-2 and MSF methods, the 50% inhibitory concentration (IC50) values against a panel of malaria drugs were determined for P. falciparum reference clones (W2, D6, 3D7 and K1) and 41 IEV clinical isolates from an area of multidrug resistance in Cambodia. Comparison of the IC50 values from the two methods was made using Wilcoxon matched pair tests and Pearson’s correlation. The lower limit of parasitaemia detection for both methods was determined for reference clones and IEV isolates. Since human white blood cell (WBC) DNA in clinical samples is known to reduce MSF assay sensitivity, SYBR Green I fluorescence linearity of P. falciparum samples spiked with WBCs was evaluated to assess the relative degree to which MSF sensitivity is reduced in clinical samples.ResultsIC50 values correlated well between the HRP-2 and MSF methods when testing either P. falciparum reference clones or IEV isolates against 4-aminoquinolines (chloroquine, piperaquine and quinine) and the quinoline methanol mefloquine (Pearson r = 0.85-0.99 for reference clones and 0.56-0.84 for IEV isolates), whereas a weaker IC50 value correlation between methods was noted when testing artemisinins against reference clones and lack of correlation when testing IEV isolates. The HRP-2 ELISA produced a higher overall success rate (90% for producing IC50 best-fit sigmoidal curves), relative to only a 40% success rate for the MSF assay, when evaluating ex vivo Cambodian isolates. Reduced sensitivity of the MSF assay is likely due to an interference of WBCs in clinical samples.ConclusionsFor clinical samples not depleted of WBCs, HRP-2 ELISA is superior to the MSF assay at evaluating fresh P. falciparum field isolates with low parasitaemia (<0.2%) generally observed in Southeast Asia.
Malaria Journal | 2012
Stuart D. Tyner; Chanthap Lon; Youry Se; Delia Bethell; Doung Socheat; Harald Noedl; Darapiseth Sea; Wichai Satimai; Kurt Schaecher; Wiriya Rutvisuttinunt; Mark M Fukuda; Suwanna Chaorattanakawee; Kritsanai Yingyuen; Siratchana Sundrakes; Panjaporn Chaichana; Piyaporn Saingam; Nillawan Buathong; Sabaithip Sriwichai; Soklyda Chann; Ans Timmermans; David Saunders; Douglas S Walsh
BackgroundIn vitro drug susceptibility assay of Plasmodium falciparum field isolates processed “immediate ex vivo” (IEV), without culture adaption, and tested using histidine-rich protein-2 (HRP-2) detection as an assay, is an expedient way to track drug resistance.MethodsFrom 2005 to 2010, a HRP-2 in vitro assay assessed 451 P. falciparum field isolates obtained from subjects with malaria in western and northern Cambodia, and eastern Thailand, processed IEV, for 50% inhibitory concentrations (IC50) against seven anti-malarial drugs, including artesunate (AS), dihydroartemisinin (DHA), and piperaquine.ResultsIn western Cambodia, from 2006 to 2010, geometric mean (GM) IC50 values for chloroquine, mefloquine, quinine, AS, DHA, and lumefantrine increased. In northern Cambodia, from 2009–2010, GM IC50 values for most drugs approximated the highest western Cambodia GM IC50 values in 2009 or 2010.ConclusionsWestern Cambodia is associated with sustained reductions in anti-malarial drug susceptibility, including the artemisinins, with possible emergence, or spread, to northern Cambodia. This potential public health crisis supports continued in vitro drug IC50 monitoring of P. falciparum isolates at key locations in the region.
Malaria Journal | 2012
Wiriya Rutvisuttinunt; Suwanna Chaorattanakawee; Stuart D. Tyner; Paktiya Teja-isavadharm; Youry Se; Kritsanai Yingyuen; Panjaporn Chaichana; Delia Bethell; Douglas S Walsh; Chanthap Lon; Mark M. Fukuda; Duong Socheat; Harald Noedl; Kurt Schaecher; David Saunders
BackgroundApparent emerging artemisinin-resistant Plasmodium falciparum malaria in Southeast Asia requires development of practical tools to monitor for resistant parasites. Although in vitro anti-malarial susceptibility tests are widely used, uncertainties remain regarding interpretation of P. falciparum field isolate values.MethodsPerformance parameters of the W2 P. falciparum clone (considered artemisinin “sensitive”) were evaluated as a reference for the HRP-2 immediate ex vivo assay. Variability in W2 IC50s was assessed, including intra- and inter-assay variability among and between technicians in multiple experiments, over five freeze-thaw cycles, over five months of continuous culture, and before and after transport of drug-coated plates to remote field sites. Nominal drug plate concentrations of artesunate (AS) and dihydroartemisinin (DHA) were verified by LC-MS analysis. Plasmodium falciparum field isolate IC50s for DHA from subjects in an artemisinin-resistant area in Cambodia were compared with W2 susceptibility.ResultsPlate drug concentrations and day-to-day technical assay performance among technicians were important sources of variability for W2 IC50s within and between assays. Freeze-thaw cycles, long-term continuous culture, and transport to and from remote sites had less influence. Despite variability in W2 susceptibility, the median IC50s for DHA for Cambodian field isolates were higher (p <0.0001) than the W2 clone (3.9 nM), both for subjects with expected (less than 72 hours; 6.3 nM) and prolonged (greater or equal to 72 hours; 9.6 nM) parasite clearance times during treatment with artesunate monotherapy.ConclusionThe W2 reference clone improved the interpretability of field isolate susceptibility from the immediate ex vivo HRP-2 assay from areas of artemisinin resistance. Methods to increase the reproducibility of plate coating may improve overall assay interpretability and utility.
Antimicrobial Agents and Chemotherapy | 2014
Charlotte A. Lanteri; Suwanna Chaorattanakawee; Chanthap Lon; David L. Saunders; Wiriya Rutvisuttinunt; Kritsanai Yingyuen; Ian Bathurst; Xavier C. Ding; Stuart D. Tyner
ABSTRACT Novel synthetic endoperoxides are being evaluated as new components of artemisinin combination therapies (ACTs) to treat artemisinin-resistant Plasmodium falciparum malaria. We conducted blinded ex vivo activity testing of fully synthetic (OZ78 and OZ277) and semisynthetic (artemisone, artemiside, artesunate, and dihydroartemisinin) endoperoxides in the histidine-rich protein 2 enzyme-linked immunosorbent assay against 200 P. falciparum isolates from areas of artemisinin-resistant malaria in western and northern Cambodia in 2009 and 2010. The order of potency and geometric mean (GM) 50% inhibitory concentrations (IC50s) were as follows: artemisone (2.40 nM) > artesunate (8.49 nM) > dihydroartemisinin (11.26 nM) > artemiside (15.28 nM) > OZ277 (31.25 nM) > OZ78 (755.27 nM). Ex vivo activities of test endoperoxides positively correlated with dihydroartemisinin and artesunate. The isolates were over 2-fold less susceptible to dihydroartemisinin than the artemisinin-sensitive P. falciparum W2 clone and showed sensitivity comparable to those with test endoperoxides and artesunate, with isolate/W2 IC50 susceptibility ratios of <2.0. All isolates had P. falciparum chloroquine resistance transporter mutations, with negative correlations in sensitivity to endoperoxides and chloroquine. The activities of endoperoxides (artesunate, dihydroartemisinin, OZ277, and artemisone) significantly correlated with that of the ACT partner drug, mefloquine. Isolates had mutations associated with clinical resistance to mefloquine, with 35% prevalence of P. falciparum multidrug resistance gene 1 (pfmdr1) amplification and 84.5% occurrence of the pfmdr1 Y184F mutation. GM IC50s for mefloquine, lumefantrine, and endoperoxides (artesunate, dihydroartemisinin, OZ277, OZ78, and artemisone) correlated with pfmdr1 copy number. Given that current ACTs are failing potentially from reduced sensitivity to artemisinins and partner drugs, newly identified mutations associated with artemisinin resistance reported in the literature and pfmdr1 mutations should be examined for their combined contributions to emerging ACT resistance.
American Journal of Tropical Medicine and Hygiene | 2004
Laura M. Erhart; Kritsanai Yingyuen; Niphon Chuanak; Nilawan Buathong; Anintita Laoboonchai; R. Scott Miller; Steven R. Meshnick; Robert A. Gasser; Chansuda Wongsrichanalai
American Journal of Tropical Medicine and Hygiene | 2006
Ruth D. Ellis; Mark M. Fukuda; Philip McDaniel; Katherine Welch; Ananda Nisalak; Clinton K. Murray; Michael R. Gray; Nichapat Uthaimongkol; Nillawan Buathong; Sabaithip Sriwichai; Rungnapha Phasuk; Kritsanai Yingyuen; Chaiyawat Mathavarat; Robert Scott Miller
American Journal of Tropical Medicine and Hygiene | 2003
Chansuda Wongsrichanalai; Iracema Arevalo; Anintita Laoboonchai; Kritsanai Yingyuen; R. Scott Miller; Alan J. Magill; J. Russ Forney; Robert A. Gasser