Stuart D. Tyner
Medical Corps
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stuart D. Tyner.
The Journal of Infectious Diseases | 2015
Shannon Takala-Harrison; Christopher G. Jacob; Cesar Arze; Michael P. Cummings; Joana C. Silva; Arjen M. Dondorp; Mark M. Fukuda; Tran Tinh Hien; Mayfong Mayxay; Harald Noedl; François Nosten; Myat Phone Kyaw; Nguyen Thanh Thuy Nhien; Mallika Imwong; Delia Bethell; Youry Se; Chanthap Lon; Stuart D. Tyner; David L. Saunders; Frédéric Ariey; Odile Mercereau-Puijalon; Didier Ménard; Paul N. Newton; Maniphone Khanthavong; Bouasy Hongvanthong; Peter Starzengruber; Hans-Peter Fuehrer; Paul Swoboda; Wasif Ali Khan; Aung Pyae Phyo
BACKGROUND The emergence of artemisinin-resistant Plasmodium falciparum in Southeast Asia threatens malaria treatment efficacy. Mutations in a kelch protein encoded on P. falciparum chromosome 13 (K13) have been associated with resistance in vitro and in field samples from Cambodia. METHODS P. falciparum infections from artesunate efficacy trials in Bangladesh, Cambodia, Laos, Myanmar, and Vietnam were genotyped at 33 716 genome-wide single-nucleotide polymorphisms (SNPs). Linear mixed models were used to test associations between parasite genotypes and parasite clearance half-lives following artesunate treatment. K13 mutations were tested for association with artemisinin resistance, and extended haplotypes on chromosome 13 were examined to determine whether mutations arose focally and spread or whether they emerged independently. RESULTS The presence of nonreference K13 alleles was associated with prolonged parasite clearance half-life (P = 1.97 × 10(-12)). Parasites with a mutation in any of the K13 kelch domains displayed longer parasite clearance half-lives than parasites with wild-type alleles. Haplotype analysis revealed both population-specific emergence of mutations and independent emergence of the same mutation in different geographic areas. CONCLUSIONS K13 appears to be a major determinant of artemisinin resistance throughout Southeast Asia. While we found some evidence of spreading resistance, there was no evidence of resistance moving westward from Cambodia into Myanmar.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Shannon Takala-Harrison; Taane G. Clark; Christopher G. Jacob; Michael P. Cummings; Olivo Miotto; Arjen M. Dondorp; Mark M. Fukuda; François Nosten; Harald Noedl; Mallika Imwong; Delia Bethell; Youry Se; Chanthap Lon; Stuart D. Tyner; David L. Saunders; Duong Socheat; Frédéric Ariey; Aung Pyae Phyo; Peter Starzengruber; Hans-Peter Fuehrer; Paul Swoboda; Kasia Stepniewska; Jennifer A. Flegg; Cesar Arze; Gustavo C. Cerqueira; Joana C. Silva; Stacy M. Ricklefs; Stephen F. Porcella; Robert M. Stephens; Matthew Adams
The recent emergence of artemisinin-resistant Plasmodium falciparum malaria in western Cambodia could threaten prospects for malaria elimination. Identification of the genetic basis of resistance would provide tools for molecular surveillance, aiding efforts to contain resistance. Clinical trials of artesunate efficacy were conducted in Bangladesh, in northwestern Thailand near the Myanmar border, and at two sites in western Cambodia. Parasites collected from trial participants were genotyped at 8,079 single nucleotide polymorphisms (SNPs) using a P. falciparum-specific SNP array. Parasite genotypes were examined for signatures of recent positive selection and association with parasite clearance phenotypes to identify regions of the genome associated with artemisinin resistance. Four SNPs on chromosomes 10 (one), 13 (two), and 14 (one) were significantly associated with delayed parasite clearance. The two SNPs on chromosome 13 are in a region of the genome that appears to be under strong recent positive selection in Cambodia. The SNPs on chromosomes 10 and 13 lie in or near genes involved in postreplication repair, a DNA damage-tolerance pathway. Replication and validation studies are needed to refine the location of loci responsible for artemisinin resistance and to understand the mechanism behind it; however, two SNPs on chromosomes 10 and 13 may be useful markers of delayed parasite clearance in surveillance for artemisinin resistance in Southeast Asia.
The Journal of Infectious Diseases | 2014
Shannon Takala-Harrison; Christopher G. Jacob; Cesar Arze; Michael P. Cummings; Joana C. Silva; Arjen M. Dondorp; Mark M. Fukuda; Tran Tinh Hien; Mayfong Mayxay; Harald Noedl; François Nosten; Myat Phone Kyaw; Nguyen Thanh Thuy Nhien; Mallika Imwong; Delia Bethell; Youry Se; Chanthap Lon; Stuart D. Tyner; David L. Saunders; Frédéric Ariey; Odile Mercereau-Puijalon; Didier Ménard; Paul N. Newton; Maniphone Khanthavong; Bouasy Hongvanthong; Peter Starzengruber; Hans-Peter Fuehrer; Paul Swoboda; Wasif Ali Khan; Aung Pyae Phyo
BACKGROUND The emergence of artemisinin-resistant Plasmodium falciparum in Southeast Asia threatens malaria treatment efficacy. Mutations in a kelch protein encoded on P. falciparum chromosome 13 (K13) have been associated with resistance in vitro and in field samples from Cambodia. METHODS P. falciparum infections from artesunate efficacy trials in Bangladesh, Cambodia, Laos, Myanmar, and Vietnam were genotyped at 33 716 genome-wide single-nucleotide polymorphisms (SNPs). Linear mixed models were used to test associations between parasite genotypes and parasite clearance half-lives following artesunate treatment. K13 mutations were tested for association with artemisinin resistance, and extended haplotypes on chromosome 13 were examined to determine whether mutations arose focally and spread or whether they emerged independently. RESULTS The presence of nonreference K13 alleles was associated with prolonged parasite clearance half-life (P = 1.97 × 10(-12)). Parasites with a mutation in any of the K13 kelch domains displayed longer parasite clearance half-lives than parasites with wild-type alleles. Haplotype analysis revealed both population-specific emergence of mutations and independent emergence of the same mutation in different geographic areas. CONCLUSIONS K13 appears to be a major determinant of artemisinin resistance throughout Southeast Asia. While we found some evidence of spreading resistance, there was no evidence of resistance moving westward from Cambodia into Myanmar.
PLOS ONE | 2011
Delia Bethell; Youry Se; Chanthap Lon; Stuart D. Tyner; David Saunders; Sabaithip Sriwichai; Sea Darapiseth; Paktiya Teja-Isavadharm; Phisit Khemawoot; Kurt Schaecher; Wiriya Ruttvisutinunt; Jessica Lin; Worachet Kuntawungin; Panita Gosi; Ans Timmermans; Bryan Smith; Duong Socheat; Mark M. Fukuda
Background The emergence of artemisinin resistance has raised concerns that the most potent antimalarial drug may be under threat. The currently recommended daily dose of artesunate (AS) is 4 mg/kg, and is administered for 3 days together with a partner antimalarial drug. This study investigated the impact of different AS doses on clinical and parasitological responses in malaria patients from an area of known artemisinin resistance in western Cambodia. Methods Adult patients with uncomplicated P. falciparum malaria were randomized into one of three 7-day AS monotherapy regimens: 2, 4 or 6 mg/kg/day (total dose 14, 28 and 42 mg/kg). Clinical, parasitological, pharmacokinetic and in vitro drug sensitivity data was collected over a 7-day inpatient period and during weekly follow-up to 42 days. Results 143 patients were enrolled (n = 75, 40 and 28 to receive AS 2, 4 and 6 mg/kg/day respectively). Cure rates were high in all treatment groups at 42 days despite almost half the patients remaining parasitemic on Day 3. There was no impact of increasing AS dose on median parasite clearance times, median parasite clearance rates or on the proportion of patients remaining parasitemic on Day 3. However at the lowest dose used (2 mg/kg/d) patients with parasitemia >10,000/µL had longer median (IQR) parasite clearance times than those with parasitemia <10,000/µL (63 (48–75) vs. 84 (66–96) hours, p<0.0001). 19% of patients in the high-dose arm developed neutropenia (absolute neutrophil count <1.0×109/L) by Day 14 and resulted in the arm being halted early. Conclusion There is no pharmacodynamic benefit of increasing the daily dose of AS (4mg/kg) currently recommended for short-course combination treatment of uncomplicated malaria, even in regions with emerging artemisinin resistance, as long as the partner drug retains high efficacy. Trial Registration ClinicalTrials.gov NCT00722150.
Clinical Infectious Diseases | 2010
Delia Bethell; Youry Se; Chanthap Lon; Duong Socheat; David Saunders; Paktiya Teja-Isavadharm; Phisit Khemawoot; Sea Darapiseth; Jessica T. Lin; Sabaithip Sriwichai; Worachet Kuntawungin; Sittidech Surasri; Sue J. Lee; Ses Sarim; Stuart D. Tyner; Mark M. Fukuda
BACKGROUND Fears of emerging artemisinin resistance in western Cambodia have prompted a series of clinical trials investigating whether slow responses to antimalarial treatment can be overcome by increasing doses of drug. METHODS Patients with uncomplicated malaria were allocated 1 of 3 oral artesunate monotherapy regimens (2, 4, or 6 mg/kg/day for 7 days) and were observed for 42 days. A series of safety measures, including complete blood count on days 0, 3, 6, and 14, was implemented because of a lack of safety data for these experimental doses. RESULTS After 3 doses, geometric mean absolute neutrophil counts were reduced in all groups, and 2 patients required artesunate to be discontinued because of neutropenia (absolute neutrophil count, <1.0 × 10(3) cells/μL). Recipients of the 6 mg/kg/day dosage had significantly lower geometric mean absolute neutrophil counts than did recipients of the 2 and 4 mg/kg/day dosages at 6 and 14 days (P < .001 for each). Overall, 5 (19%) of 26 patients who received the 6 mg/kg/day dosage became neutropenic within 14 days, triggering a cohort-halting rule and ending the trial early. Pharmacokinetic data from neutropenic patients showed wide variance, with plasma clearance occurring significantly slower in neutropenic patients than in nonneutropenic patients. CONCLUSIONS Artesunate remains a crucial drug for the treatment of malaria, and determining optimal dosing regimens is vital to overcome emerging resistant parasite strains along the Thai-Cambodian border. However, future experimental dosing studies must be designed with care, because the safety of such regimens can no longer be assumed. The artemisinin derivatives remain one of the safest classes of antimalarial drugs, but this study demonstrates that the dosing limit may have been reached.
PLOS ONE | 2014
Chanthap Lon; Jessica Manning; Pattaraporn Vanachayangkul; Mary So; Darapiseth Sea; Youry Se; Panita Gosi; Charlotte A. Lanteri; Suwanna Chaorattanakawee; Sabaithip Sriwichai; Soklyda Chann; Worachet Kuntawunginn; Nillawan Buathong; Samon Nou; Douglas S. Walsh; Stuart D. Tyner; Jonathan J. Juliano; Jessica T. Lin; Michele Spring; Delia Bethell; Jaranit Kaewkungwal; Douglas B. Tang; Char Meng Chuor; Prom Satharath; David Saunders
Introduction Emerging antimalarial drug resistance in mobile populations remains a significant public health concern. We compared two regimens of dihydroartemisinin-piperaquine in military and civilians on the Thai-Cambodian border to evaluate national treatment policy. Methods Efficacy and safety of two and three-day regimens of dihydroartemisinin-piperaquine were compared as a nested open-label evaluation within a malaria cohort study in 222 otherwise healthy volunteers (18% malaria-infected at baseline). The first 80 volunteers with slide-confirmed Plasmodium falciparum or vivax malaria were randomized 1:1 to receive either regimen (total dose 360mg dihydroartemisinin and 2880mg piperaquine) and followed weekly for up to 6 months. The primary endpoint was malaria recurrence by day 42. Volunteers with vivax infection received primaquine at study discharge with six months follow-up. Results Eighty patients (60 vivax, 15 falciparum, and 5 mixed) were randomized to dihydroartemisinin-piperaquine. Intention-to-treat all-species efficacy at Day 42 was 85% for the two-day regimen (95% CI 69–94) and 90% for the three-day regimen (95% CI 75–97). PCR-adjusted falciparum efficacy was 75% in both groups with nearly half (45%) still parasitemic at Day 3. Plasma piperaquine levels were comparable to prior published reports, but on the day of recrudescence were below measurable in vitro piperaquine IC50 levels in all falciparum treatment failures. Conclusions In the brief period since introduction of dihydroartemisinin-piperaquine, there is early evidence suggesting declining efficacy relative to previous reports. Parasite IC50 levels in excess of plasma piperaquine levels seen only in treatment failures raises concern for clinically significant piperaquine resistance in Cambodia. These findings warrant improved monitoring of clinical outcomes and follow-up, given few available alternative drugs. Trial Registration ClinicalTrials.gov NCT01280162
BMC Public Health | 2011
Mark M Fukuda; Terry A. Klein; Tadeusz J. Kochel; Talia M. Quandelacy; Bryan L. Smith; Jeff Villinski; Delia Bethell; Stuart D. Tyner; Youry Se; Chanthap Lon; David Saunders; Jacob D. Johnson; Eric Wagar; Douglas S. Walsh; Matthew R. Kasper; Jose L. Sanchez; Clara J. Witt; Qin Cheng; Norman C. Waters; Sanjaya K. Shrestha; Julie A. Pavlin; Andres G. Lescano; Paul C. F. Graf; Jason H. Richardson; Salomon Durand; William O. Rogers; David L. Blazes; Kevin L. Russell
Vector-borne infections (VBI) are defined as infectious diseases transmitted by the bite or mechanical transfer of arthropod vectors. They constitute a significant proportion of the global infectious disease burden. United States (U.S.) Department of Defense (DoD) personnel are especially vulnerable to VBIs due to occupational contact with arthropod vectors, immunological naiveté to previously unencountered pathogens, and limited diagnostic and treatment options available in the austere and unstable environments sometimes associated with military operations. In addition to the risk uniquely encountered by military populations, other factors have driven the worldwide emergence of VBIs. Unprecedented levels of global travel, tourism and trade, and blurred lines of demarcation between zoonotic VBI reservoirs and human populations increase vector exposure. Urban growth in previously undeveloped regions and perturbations in global weather patterns also contribute to the rise of VBIs. The Armed Forces Health Surveillance Center-Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) and its partners at DoD overseas laboratories form a network to better characterize the nature, emergence and growth of VBIs globally. In 2009 the network tested 19,730 specimens from 25 sites for Plasmodium species and malaria drug resistance phenotypes and nearly another 10,000 samples to determine the etiologies of non-Plasmodium species VBIs from regions spanning from Oceania to Africa, South America, and northeast, south and Southeast Asia. This review describes recent VBI-related epidemiological studies conducted by AFHSC-GEIS partner laboratories within the OCONUS DoD laboratory network emphasizing their impact on human populations.
Antimicrobial Agents and Chemotherapy | 2015
Suwanna Chaorattanakawee; David L. Saunders; Darapiseth Sea; Nitima Chanarat; Kritsanai Yingyuen; Siratchana Sundrakes; Piyaporn Saingam; Nillawan Buathong; Sabaithip Sriwichai; Soklyda Chann; Youry Se; You Yom; Thay Kheng Heng; Nareth Kong; Worachet Kuntawunginn; Kuntida Tangthongchaiwiriya; Christopher G. Jacob; Shannon Takala-Harrison; Christopher V. Plowe; Jessica T. Lin; Char Meng Chuor; Satharath Prom; Stuart D. Tyner; Panita Gosi; Paktiya Teja-Isavadharm; Chanthap Lon; Charlotte A. Lanteri
ABSTRACT Cambodias first-line artemisinin combination therapy, dihydroartemisinin-piperaquine (DHA-PPQ), is no longer sufficiently curative against multidrug-resistant Plasmodium falciparum malaria at some Thai-Cambodian border regions. We report recent (2008 to 2013) drug resistance trends in 753 isolates from northern, western, and southern Cambodia by surveying for ex vivo drug susceptibility and molecular drug resistance markers to guide the selection of an effective alternative to DHA-PPQ. Over the last 3 study years, PPQ susceptibility declined dramatically (geomean 50% inhibitory concentration [IC50] increased from 12.8 to 29.6 nM), while mefloquine (MQ) sensitivity doubled (67.1 to 26 nM) in northern Cambodia. These changes in drug susceptibility were significantly associated with a decreased prevalence of P. falciparum multidrug resistance 1 gene (Pfmdr1) multiple copy isolates and coincided with the timing of replacing artesunate-mefloquine (AS-MQ) with DHA-PPQ as the first-line therapy. Widespread chloroquine resistance was suggested by all isolates being of the P. falciparum chloroquine resistance transporter gene CVIET haplotype. Nearly all isolates collected from the most recent years had P. falciparum kelch13 mutations, indicative of artemisinin resistance. Ex vivo bioassay measurements of antimalarial activity in plasma indicated 20% of patients recently took antimalarials, and their plasma had activity (median of 49.8 nM DHA equivalents) suggestive of substantial in vivo drug pressure. Overall, our findings suggest DHA-PPQ failures are associated with emerging PPQ resistance in a background of artemisinin resistance. The observed connection between drug policy changes and significant reduction in PPQ susceptibility with mitigation of MQ resistance supports reintroduction of AS-MQ, in conjunction with monitoring of the P. falciparum mdr1 copy number, as a stop-gap measure in areas of DHA-PPQ failure.
Malaria Journal | 2013
Panita Gosi; Charlotte A. Lanteri; Stuart D. Tyner; Youry Se; Chanthap Lon; Michele Spring; Mengchuor Char; Darapiseth Sea; Sabaithip Sriwichai; Sittidech Surasri; Saowaluk Wongarunkochakorn; Kingkan Pidtana; Douglas S. Walsh; Mark M. Fukuda; Jessica Manning; David L. Saunders; Delia Bethell
BackgroundDespite widespread coverage of the emergence of artemisinin resistance, relatively little is known about the parasite populations responsible. The use of PCR genotyping around the highly polymorphic Plasmodium falciparum msp1, msp2 and glurp genes has become well established both to describe variability in alleles within a population of parasites, as well as classify treatment outcome in cases of recurrent disease. The primary objective was to assess the emergence of minority parasite clones during seven days of artesunate (AS) treatment in a location with established artemisinin resistance. An additional objective was to investigate whether the classification of clinical outcomes remained valid when additional genotyping was performed.MethodsBlood for parasite genotyping was collected from 143 adult patients presenting with uncomplicated falciparum malaria during a clinical trial of AS monotherapy in Western Cambodia. Nested allelic type-specific amplification of the genes encoding the merozoite surface proteins 1 and 2 (msp1 and msp2) and the glutamate-rich protein (glurp) was performed at baseline, daily during seven days of treatment, and again at failure. Allelic variants were analysed with respect to the size of polymorphisms using Quantity One software to enable identification of polyclonal infections.ResultsConsiderable variation of msp2 alleles but well-conserved msp1 and glurp were identified. At baseline, 31% of infections were polyclonal for one or more genes. Patients with recurrent malaria were significantly more likely to have polyclonal infections than patients without recurrence (seven of nine versus 36 of 127, p = 0.004). Emergence of minority alleles during treatment was detected in only one of twenty-three cases defined as being artemisinin resistant. Moreover, daily genotyping did not alter the final outcome classification in any recurrent cases.ConclusionsThe parasites responsible for artemisinin-resistant malaria in a clinical trial in Western Cambodia comprise the dominant clones of acute malaria infections rather than minority clones emerging during treatment. Additional genotyping during therapy was not beneficial. Disproportionately high rates of polyclonal infections in cases of recurrence suggest complex infections lead to poor treatment outcomes. Current research objectives should be broadened to include identification and follow-up of recurrent polyclonal infections so as to define their role as potential agents of emerging resistance.
Malaria Journal | 2013
Suwanna Chaorattanakawee; Stuart D. Tyner; Chanthap Lon; Kritsanai Yingyuen; Wiriya Ruttvisutinunt; Siratchana Sundrakes; Piyaporn Sai-gnam; Jacob D. Johnson; Douglas S. Walsh; David L. Saunders; Charlotte A. Lanteri
BackgroundPerformance of the histidine-rich protein-2 enzyme-linked immunosorbent assay (HRP-2 ELISA) and malaria SYBR Green I fluorescence (MSF) drug sensitivity tests were directly compared using Plasmodium falciparum reference strains and fresh ex vivo isolates from Cambodia against a panel of standard anti-malarials. The objective was to determine which of these two common assays is more appropriate for studying drug susceptibility of “immediate ex vivo” (IEV) isolates, analysed without culture adaption, in a region of relatively low malaria transmission.MethodsUsing the HRP-2 and MSF methods, the 50% inhibitory concentration (IC50) values against a panel of malaria drugs were determined for P. falciparum reference clones (W2, D6, 3D7 and K1) and 41 IEV clinical isolates from an area of multidrug resistance in Cambodia. Comparison of the IC50 values from the two methods was made using Wilcoxon matched pair tests and Pearson’s correlation. The lower limit of parasitaemia detection for both methods was determined for reference clones and IEV isolates. Since human white blood cell (WBC) DNA in clinical samples is known to reduce MSF assay sensitivity, SYBR Green I fluorescence linearity of P. falciparum samples spiked with WBCs was evaluated to assess the relative degree to which MSF sensitivity is reduced in clinical samples.ResultsIC50 values correlated well between the HRP-2 and MSF methods when testing either P. falciparum reference clones or IEV isolates against 4-aminoquinolines (chloroquine, piperaquine and quinine) and the quinoline methanol mefloquine (Pearson r = 0.85-0.99 for reference clones and 0.56-0.84 for IEV isolates), whereas a weaker IC50 value correlation between methods was noted when testing artemisinins against reference clones and lack of correlation when testing IEV isolates. The HRP-2 ELISA produced a higher overall success rate (90% for producing IC50 best-fit sigmoidal curves), relative to only a 40% success rate for the MSF assay, when evaluating ex vivo Cambodian isolates. Reduced sensitivity of the MSF assay is likely due to an interference of WBCs in clinical samples.ConclusionsFor clinical samples not depleted of WBCs, HRP-2 ELISA is superior to the MSF assay at evaluating fresh P. falciparum field isolates with low parasitaemia (<0.2%) generally observed in Southeast Asia.