Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krushna C. Patra is active.

Publication


Featured researches published by Krushna C. Patra.


Trends in Biochemical Sciences | 2014

The pentose phosphate pathway and cancer

Krushna C. Patra; Nissim Hay

The pentose phosphate pathway (PPP), which branches from glycolysis at the first committed step of glucose metabolism, is required for the synthesis of ribonucleotides and is a major source of NADPH. NADPH is required for and consumed during fatty acid synthesis and the scavenging of reactive oxygen species (ROS). Therefore, the PPP plays a pivotal role in helping glycolytic cancer cells to meet their anabolic demands and combat oxidative stress. Recently, several neoplastic lesions were shown to have evolved to facilitate the flux of glucose into the PPP. This review summarizes the fundamental functions of the PPP, its regulation in cancer cells, and its importance in cancer cell metabolism and survival.


Cancer Cell | 2013

Hexokinase 2 Is Required for Tumor Initiation and Maintenance and Its Systemic Deletion Is Therapeutic in Mouse Models of Cancer

Krushna C. Patra; Qi Wang; Prashanth T. Bhaskar; Luke Miller; Zebin Wang; Will Wheaton; Navdeep S. Chandel; Markku Laakso; William J. Muller; Eric L. Allen; Abhishek K. Jha; Gromoslaw A. Smolen; Michelle F. Clasquin; R.Brooks Robey; Nissim Hay

Accelerated glucose metabolism is a common feature of cancer cells. Hexokinases catalyze the first committed step of glucose metabolism. Hexokinase 2 (HK2) is expressed at high level in cancer cells, but only in a limited number of normal adult tissues. Using Hk2 conditional knockout mice, we showed that HK2 is required for tumor initiation and maintenance in mouse models of KRas-driven lung cancer, and ErbB2-driven breast cancer, despite continued HK1 expression. Similarly, HK2 ablation inhibits the neoplastic phenotype of human lung and breast cancer cells in vitro and in vivo. Systemic Hk2 deletion is therapeutic in mice bearing lung tumors without adverse physiological consequences. Hk2 deletion in lung cancer cells suppressed glucose-derived ribonucleotides and impaired glutamine-derived carbon utilization in anaplerosis.


Cancer Research | 2013

DDB2 Suppresses Epithelial to Mesenchymal Transition in Colon Cancer

Nilotpal Roy; Prashant V Bommi; Uppoor G. Bhat; Shaumick Bhattacharjee; Indira Elangovan; Jing Li; Krushna C. Patra; Dragana Kopanja; Adam Blunier; Richard V. Benya; Srilata Bagchi; Pradip Raychaudhuri

Colon cancer is one of the deadliest cancers worldwide because of its metastasis to other essential organs. Metastasis of colon cancer involves a complex set of events, including epithelial-to-mesenchymal transition (EMT) that increases invasiveness of the tumor cells. Here, we show that the xeroderma pigmentosum group E (XPE) gene product, damaged DNA-binding protein (DDB)-2, is downregulated in high-grade colon cancers, and it plays a dominant role in the suppression of EMT of the colon cancer cells. Depletion of DDB2 promotes mesenchymal phenotype, whereas expression of DDB2 promotes epithelial phenotype. DDB2 constitutively represses genes that are the key activators of EMT, indicating that DDB2 is a master regulator of EMT of the colon cancer cells. Moreover, we observed evidence that DDB2 functions as a barrier for EMT induced by hypoxia and TGF-β. Also, we provide evidence that DDB2 inhibits metastasis of colon cancer. The results presented here identify a transcriptional regulatory pathway of DDB2 that is directly linked to the mechanisms that suppress metastasis of colon cancer.


Molecular and Cellular Biology | 2009

mTORC1 Hyperactivity Inhibits Serum Deprivation-Induced Apoptosis via Increased Hexokinase II and GLUT1 Expression, Sustained Mcl-1 Expression, and Glycogen Synthase Kinase 3β Inhibition

Prashanth T. Bhaskar; Véronique Nogueira; Krushna C. Patra; Sang Min Jeon; Youngkyu Park; R.Brooks Robey; Nissim Hay

ABSTRACT The current concept is that Tsc-deficient cells are sensitized to apoptosis due to the inhibition of Akt activity by the negative feedback mechanism induced by the hyperactive mTORC1. Unexpectedly, however, we found that Tsc1/2-deficient cells exhibit increased resistance to serum deprivation-induced apoptosis. mTORC1 hyperactivity contributes to the apoptotic resistance of serum-deprived Tsc1/2-deficient cells in part by increasing the growth factor-independent expression of hexokinase II (HKII) and GLUT1. mTORC1-mediated increase in hypoxia-inducible factor 1α (HIF1α) abundance, which occurs in the absence of serum in normoxic Tsc2-deficient cells, contributes to these changes. Increased HIF1α abundance in these cells is attributed to both an increased level and the sustained translation of HIF1α mRNA. Sustained glycogen synthase kinase 3β inhibition and Mcl-1 expression also contribute to the apoptotic resistance of Tsc2-deficient cells to serum deprivation. The inhibition of mTORC1 activity by either rapamycin or Raptor knockdown cannot resensitize these cells to serum deprivation-induced apoptosis because of elevated Akt activity that is an indirect consequence of mTORC1 inhibition. However, the increased HIF1α abundance and the maintenance of Mcl-1 protein expression in serum-deprived Tsc2−/− cells are dependent largely on the hyperactive eIF4E in these cells. Consistently, the reduction of eIF4E levels abrogates the resistance of Tsc2−/− cells to serum deprivation-induced apoptosis.


Nature Communications | 2018

Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin

Dannielle DeWaal; Veronique Nogueira; Alexander R. Terry; Krushna C. Patra; Sang Min Jeon; Grace Guzman; Jennifer Au; Christopher P. Long; Maciek R. Antoniewicz; Nissim Hay

Hepatocellular carcinoma (HCC) cells are metabolically distinct from normal hepatocytes by expressing the high-affinity hexokinase (HK2) and suppressing glucokinase (GCK). This is exploited to selectively target HCC. Hepatic HK2 deletion inhibits tumor incidence in a mouse model of hepatocarcinogenesis. Silencing HK2 in human HCC cells inhibits tumorigenesis and increases cell death, which cannot be restored by GCK or mitochondrial binding deficient HK2. Upon HK2 silencing, glucose flux to pyruvate and lactate is inhibited, but TCA fluxes are maintained. Serine uptake and glycine secretion are elevated suggesting increased requirement for one-carbon contribution. Consistently, vulnerability to serine depletion increases. The decrease in glycolysis is coupled to elevated oxidative phosphorylation, which is diminished by metformin, further increasing cell death and inhibiting tumor growth. Neither HK2 silencing nor metformin alone inhibits mTORC1, but their combination inhibits mTORC1 in an AMPK-independent and REDD1-dependent mechanism. Finally, HK2 silencing synergizes with sorafenib to inhibit tumor growth.Hexokinase 2 (HK2) is selectively upregulated in hepatocellular carcinoma (HCC). Here the authors show that HK2 ablation decreases glycolysis and triggers oxidative phosphorylation (OXPHO) rendering HCC more susceptible to the OXPHO inhibitor metformin and to the FDA-approved drug sorafenib.


Clinical and translational gastroenterology | 2017

Diversity of Precursor Lesions For Pancreatic Cancer: The Genetics and Biology of Intraductal Papillary Mucinous Neoplasm

Krushna C. Patra; Nabeel Bardeesy; Yusuke Mizukami

Pancreatic ductal adenocarcinoma (PDA), one of the most lethal cancers worldwide, is associated with two main types of morphologically distinct precursors—pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN). Although the progression of PanIN into invasive cancer has been well characterized, there remains an urgent need to understand the biology of IPMNs, which are larger radiographically detectable cystic tumors. IPMNs comprise a number of subtypes with heterogeneous histopathologic and clinical features. Although frequently remaining benign, a significant proportion exhibits malignant progression. Unfortunately, there are presently no accurate prognosticators for assessing cancer risk in individuals with IPMN. Moreover, the fundamental mechanisms differentiating PanIN and IPMN remain largely obscure, as do those that distinguish IPMN subtypes. Recent studies, however, have identified distinct genetic profiles between PanIN and IPMN, providing a framework to better understand the diversity of the precursors for PDA. Here, we review the clinical, biological, and genetic properties of IPMN and discuss various models for progression of these tumors to invasive PDA.


Cell Reports | 2015

Systemic Akt1 Deletion after Tumor Onset in p53(-/-) Mice Increases Lifespan and Regresses Thymic Lymphoma Emulating p53 Restoration.

Wan Ni Yu; Veronique Nogueira; Arya Sobhakumari; Krushna C. Patra; Prashanth T. Bhaskar; Nissim Hay

Akt is frequently activated in human cancers. However, it is unknown whether systemic inhibition of a single Akt isoform could regress cancer progression in cancers that are not driven by Akt activation. We systemically deleted Akt1 after tumor onset in p53(-/-) mice, which develop tumors independently of Akt activation. Systemic Akt1 deletion regresses thymic lymphoma in p53(-/-) mice emulating p53 restoration. Furthermore, pharmacological inhibition of Akt selectively kills thymic lymphoma cells and not primary thymocytes. Mechanistically, Akt1 inhibition in p53(-/-) thymic lymphoma inhibits Skp2 expression and induces FasL, which is the primary cause of cell death. Skp2 exerts resistance to cell death by antagonizing the induction of FasL and reducing FAS expression, which is linked to cyclin D1 expression. The results established a paradigm whereby systemic Akt1 inhibition is sufficient to regress tumors that are not driven by Akt activation and a mechanism of cell survival by Skp2.


eLife | 2018

Selective eradication of cancer displaying hyperactive Akt by exploiting the metabolic consequences of Akt activation

Veronique Nogueira; Krushna C. Patra; Nissim Hay

Akt activation in human cancers exerts chemoresistance, but pan-Akt inhibition elicits adverse consequences. We exploited the consequences of Akt-mediated mitochondrial and glucose metabolism to selectively eradicate and evade chemoresistance of prostate cancer displaying hyperactive Akt. PTEN-deficient prostate cancer cells that display hyperactivated Akt have high intracellular reactive oxygen species (ROS) levels, in part, because of Akt-dependent increase of oxidative phosphorylation. High intracellular ROS levels selectively sensitize cells displaying hyperactive Akt to ROS-induced cell death enabling a therapeutic strategy combining a ROS inducer and rapamycin in PTEN-deficient prostate tumors in mouse models. This strategy elicited tumor regression, and markedly increased survival even after the treatment was stopped. By contrast, exposure to antioxidant increased prostate tumor progression. To increase glucose metabolism, Akt activation phosphorylated HK2 and induced its expression. Indeed, HK2 deficiency in mouse models of Pten-deficient prostate cancer elicited a marked inhibition of tumor development and extended lifespan.


Nature Cell Biology | 2018

Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism

Krushna C. Patra; Yasutaka Kato; Yusuke Mizukami; Sebastian Widholz; Myriam Boukhali; Iulia Revenco; Elizabeth A. Grossman; Fei Ji; Ruslan I. Sadreyev; Andrew S. Liss; Robert A. Screaton; Kei Sakamoto; David P. Ryan; Mari Mino-Kenudson; Carlos Fernandez-del Castillo; Daniel K. Nomura; Wilhelm Haas; Nabeel Bardeesy

G protein αs (GNAS) mediates receptor-stimulated cAMP signalling, which integrates diverse environmental cues with intracellular responses. GNAS is mutationally activated in multiple tumour types, although its oncogenic mechanisms remain elusive. We explored this question in pancreatic tumourigenesis where concurrent GNAS and KRAS mutations characterize pancreatic ductal adenocarcinomas (PDAs) arising from intraductal papillary mucinous neoplasms (IPMNs). By developing genetically engineered mouse models, we show that GnasR201C cooperates with KrasG12D to promote initiation of IPMN, which progress to invasive PDA following Tp53 loss. Mutant Gnas remains critical for tumour maintenance in vivo. This is driven by protein-kinase-A-mediated suppression of salt-inducible kinases (Sik1–3), associated with induction of lipid remodelling and fatty acid oxidation. Comparison of Kras-mutant pancreatic cancer cells with and without Gnas mutations reveals striking differences in the functions of this network. Thus, we uncover Gnas-driven oncogenic mechanisms, identify Siks as potent tumour suppressors, and demonstrate unanticipated metabolic heterogeneity among Kras-mutant pancreatic neoplasms.Bardeesy and colleagues show that mutant GNAS suppresses salt-inducible kinases by activating PKA, leading to lipid remodelling and pancreatic tumourigenesis


Cancer Research | 2018

Kras and Tp53 Mutations Cause Cholangiocyte- and Hepatocyte-Derived Cholangiocarcinoma

Margaret A Hill; William B Alexander; Bing Guo; Yasutaka Kato; Krushna C. Patra; Michael R O'Dell; Matthew N. McCall; Christa L. Whitney-Miller; Nabeel Bardeesy

Intrahepatic cholangiocarcinoma (iCCA) is a primary liver cancer epidemiologically linked with liver injury, which has poorly understood incipient stages and lacks early diagnostics and effective therapies. While iCCA is conventionally thought to arise from the biliary tract, studies have suggested that both hepatocytes and biliary cells (cholangiocytes) may give rise to iCCA. Consistent with the plasticity of these cell lineages, primary liver carcinomas exhibit a phenotypic range from hepatocellular carcinoma (HCC) to iCCA, with intermediates along this spectrum. Here, we generated mouse models to examine the consequence of targeting mutant Kras and Tp53, common alterations in human iCCA, to different adult liver cell types. Selective induction of these mutations in the SOX9+ population, predominantly consisting of mature cholangiocytes, resulted in iCCA emerging from premalignant biliary intraepithelial neoplasia (BilIN). In contrast, adult hepatocytes were relatively refractory to these mutations and formed rare HCC. In this context, injury accelerated hepatocyte-derived tumorigenesis and promoted a phenotypic switch to iCCA. BilIN precursor lesions were absent in the hepatocyte-derived iCCA models, pointing toward distinct and direct emergence of a malignant cholangiocytic phenotype from injured, oncogenically primed hepatocytes. Tp53 loss enhanced the reprogramming of hepatocytes to cholangiocytes, which may represent a mechanism facilitating formation of hepatocyte-derived iCCA. Overall, our work shows iCCA driven by Kras and Tp53 may originate from both mature cholangiocytes and hepatocytes, and factors such as chronic liver injury and underlying genetic mutations determine the path of progression and resulting cancer phenotype.Significance: The histopathogenesis of biliary tract cancer, driven by Tp53 and Kras mutations, can be differentially impacted by the cell of origin within the mature liver as well by major epidemiologic risk factors. Cancer Res; 78(16); 4445-51. ©2018 AACR.

Collaboration


Dive into the Krushna C. Patra's collaboration.

Top Co-Authors

Avatar

Nissim Hay

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prashanth T. Bhaskar

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Veronique Nogueira

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yusuke Mizukami

Asahikawa Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander R. Terry

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge