Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krystyna M. Saunders is active.

Publication


Featured researches published by Krystyna M. Saunders.


Journal of Environmental Management | 2009

Palaeoecology: a tool to improve the management of Australian estuaries

Krystyna M. Saunders; Kathryn H. Taffs

Addressing environmental problems in estuaries is a worldwide problem. Establishing benchmarks and targets for management is critical, whether the aim is conservation, restoration or sustainable use. Palaeoecological techniques have rapidly improved during the past decade, particularly with advances in methods that allow high resolution quantitative assessments of environmental change. Palaeoecology is a useful tool in environmental management as it allows pre-impact conditions, the rate, extent, direction and cause of change, and range of natural variability to be determined. Australian estuarine ecosystems are qualitatively different from the often more well-studied estuaries in North America and Europe, which means site-specific studies of Australian estuaries are needed to inform management. While a potentially useful and valuable tool, palaeoecological techniques have not yet been widely adopted and practically implemented as part of estuarine management strategies and policy frameworks in Australia. We discuss the role palaeoecological techniques have to play in estuarine management by providing two case studies undertaken in Australia that have provided management information. We aim to encourage communication and dialogue between scientists and environmental managers about the potential for widespread practical adoption and implementation of palaeoecological techniques into Australian estuarine science, management and policy frameworks.


Scientific Data | 2017

A global multiproxy database for temperature reconstructions of the Common Era

Julien Emile-Geay; Nicholas P. McKay; Darrell S. Kaufman; Lucien von Gunten; Jianghao Wang; Nerilie J. Abram; Jason A. Addison; Mark A. J. Curran; Michael N. Evans; Benjamin J. Henley; Zhixin Hao; Belen Martrat; Helen V. McGregor; Raphael Neukom; Gregory T. Pederson; Barbara Stenni; Kaustubh Thirumalai; Johannes P. Werner; Chenxi Xu; Dmitry Divine; Bronwyn C. Dixon; Joëlle Gergis; Ignacio A. Mundo; Takeshi Nakatsuka; Steven J. Phipps; Cody C. Routson; Eric J. Steig; Jessica E. Tierney; Jonathan J. Tyler; Kathryn Allen

Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850–2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.


The Holocene | 2013

A 950 yr temperature reconstruction from Duckhole Lake, southern Tasmania, Australia

Krystyna M. Saunders; Martin Grosjean; Dominic A. Hodgson

A lack of quantitative high resolution paleoclimate data from the Southern Hemisphere limits the ability to examine current trends within the context of long-term natural climate variability. This study presents a temperature reconstruction for southern Tasmania based on analyses of a sediment core from Duckhole Lake (43.365°S, 146.875°E). The relationship between non-destructive whole core scanning reflectance spectroscopy measurements in the visible spectrum (380–730 nm) and the instrumental temperature record (ad 1911–2000) was used to develop a calibration-in-time reflectance spectroscopy-based temperature model. Results showed that a trough in reflectance from 650 to 700 nm, which represents chlorophyll and its derivatives, was significantly correlated to annual mean temperature. A calibration model was developed (R = 0.56, pauto < 0.05, root mean squared error of prediction (RMSEP) = 0.21°C, five-year filtered data, calibration period 1911–2000) and applied down-core to reconstruct annual mean temperatures in southern Tasmania over the last c. 950 years. This indicated that temperatures were initially cool c. ad 1050, but steadily increased until the late ad 1100s. After a brief cool period in the ad 1200s, temperatures again increased. Temperatures steadily decreased during the ad 1600s and remained relatively stable until the start of the 20th century when they rapidly decreased, before increasing from ad 1960s onwards. Comparisons with high resolution temperature records from western Tasmania, New Zealand and South America revealed some similarities, but also highlighted differences in temperature variability across the mid-latitudes of the Southern Hemisphere. These are likely due to a combination of factors including the spatial variability in climate between and within regions, and differences between records that document seasonal (i.e. warm season/late summer) versus annual temperature variability. This highlights the need for further records from the mid-latitudes of the Southern Hemisphere in order to constrain past natural spatial and seasonal/annual temperature variability in the region, and to accurately identify and attribute changes to natural variability and/or anthropogenic activities.


Antarctic Science | 2009

Quantitative relationships between benthic diatom assemblages and water chemistry in Macquarie Island lakes and their potential for reconstructing past environmental changes

Krystyna M. Saunders; Dominic A. Hodgson; Andrew McMinn

Abstract This study is the first published survey of diatom-environment relationships on sub-Antarctic Macquarie Island. Fifty-eight sites in 50 coastal and inland lakes were sampled for benthic diatoms and water chemistry. 208 diatom species from 34 genera were identified. Multivariate analyses indicated that the lakes were distributed along nutrient and conductivity gradients. Conductivity, pH, phosphate (SRP), silicate and temperature all explained independent portions of the variance in the diatom data. Transfer functions provide a quantitative basis for palaeolimnological studies of past climate change and human impacts, and can be used to establish baseline conditions for assessing the impacts of recent climate change and the introduction of non-native plants and animals. Statistically robust diatom transfer functions for conductivity, phosphate and silicate were developed, while pH and temperature transfer functions performed less well. The lower predictive abilities of the pH and temperature transfer functions probably reflect the broad pH tolerance range of diatoms on Macquarie Island and uneven distribution of lakes along the temperature gradient. This study contributes to understanding the current ecological distribution of Macquarie Island diatoms and provides transfer functions that will be applied in studies of diatoms in lake sediment cores to quantitatively reconstruct past environmental changes.


Geology | 2018

Centennial-scale trends in the Southern Annular Mode revealed by hemisphere-wide fire and hydroclimatic trends over the past 2400 years

Michael-Shawn Fletcher; Alexa Benson; David M. J. S. Bowman; Patricia Gadd; Hendrik Heijnis; Michela Mariani; Krystyna M. Saunders; Brent B. Wolfe; Atun Zawadzki

Millennial-scale latitudinal shifts in the southern westerly winds (SWW) drive changes in Southern Ocean upwelling, leading to changes in atmospheric CO2 levels, thereby affecting the global climate and carbon cycle. Our aim here is to understand whether century-scale shifts in the SWW also drive changes in atmospheric CO2 content. We report new multiproxy lake sediment data from southwest Tasmania, Australia, that show centennial-scale changes in vegetation and fire activity over the past 2400 yr. We compare our results with existing data from southern South America and reveal synchronous and in-phase centennial-scale trends in vegetation and fire activity between southwest Tasmania and southern South America over the past 2400 yr. Interannual to centennial-scale rainfall anomalies and fire activity in both these regions are significantly correlated with shifts in the SWW associated with the Southern Annular Mode (SAM; atmospheric variability of the Southern Hemisphere). Thus, we interpret the centennial-scale trends we have identified as reflecting century-scale SAM-like shifts in the SWW over the past 2400 yr. We identify covariance between our inferred century-scale shifts in the SWW and Antarctic ice core CO2 values, demonstrating that the SWW-CO2 relationship operating at a millennial scale also operates at a centennial scale through the past 2400 yr. Our results indicate a possible westerly-driven modulation of recent increases in global atmospheric CO2 content that could potentially exacerbate current greenhouse gas–related warming.


Archive | 2017

Diatoms as indicators of environmental change in estuaries

Kathryn H. Taffs; Krystyna M. Saunders; Brendan Logan

Diatoms are valuable paleo-indicators of natural processes and environmental changes caused by human activities in estuaries. They have been used to study sea level change, climate variability, floods and tsunamis, problems associated with changes in salinity and nutrients due to human activities, and to assess ecosystem responses to remediation, among others. There are many challenges such as issues of sediment disturbance and frustule preservation, as well as limitations on the development of transfer functions due to a lack of analogue sites. However, the application of diatoms to paleo-studies in a range of coastal habitats has enabled reliable and informative qualitative and quantitative reconstructions of environmental change. This chapter provides an overview of diatom estuarine ecology, different applications of diatoms to estuarine paleoecological research, their potential yet often informative limitations, and challenges going forward.


Journal of Geophysical Research | 2018

Biogeochemical Responses to Holocene Catchment‐Lake Dynamics in the Tasmanian World Heritage Area, Australia

Michela Mariani; Kristen K. Beck; Michael-Shawn Fletcher; Peter Gell; Krystyna M. Saunders; Patricia Gadd; Robert Chisari

Environmental changes such as climate, land use, and fire activity affect terrestrial and aquatic ecosystems at multiple scales of space and time. Due to the nature of the interactions between terrestrial and aquatic dynamics, an integrated study using multiple proxies is critical for a better understanding of climate- and fire-driven impacts on environmental change. Here we present a synthesis of biological and geochemical data (pollen, spores, diatoms, micro X-ray fluorescence scanning, CN content, and stable isotopes) from Dove Lake, Tasmania, allowing us to disentangle long-term terrestrial-aquatic dynamics through the last 12 kyear. We found that aquatic dynamics at Dove Lake are tightly linked to vegetation shifts dictated by regional hydroclimatic variability in western Tasmania. A major shift in the diatom composition was detected at ca. 6 ka, and it was likely mediated by changes in regional terrestrial vegetation, charcoal, and iron accumulation. High rainforest abundance prior ca. 6 ka is linked to increased terrestrially derived organic matter delivery into the lake, higher dystrophy, anoxic bottom conditions, and lower light penetration depths. The shift to a landscape with a higher proportion of sclerophyll species following the intensification of El Nino-Southern Oscillation since ca. 6 ka corresponds to a decline in terrestrial organic matter input into Dove Lake, lower dystrophy levels, higher oxygen availability, and higher light availability for algae and littoral macrophytes. This record provides new insights on terrestrial-aquatic dynamics that could contribute to the conservation management plans in the Tasmanian World Heritage Area and in temperate high-altitude dystrophic systems elsewhere.


Scientific Data | 2017

Data Descriptor: A global multiproxy database for temperature reconstructions of the Common Era

Nerilie J. Abram; Nalan Koc; Chenxi Xu; Andrew Lorrey; Quansheng Ge; Xuemei Shao; Vasile Ersek; Alexey Ekaykin; P. Graham Mortyn; Eugene R. Wahl; Rixt de Jong; Trevor J. Porter; Marie-Alexandrine Sicre; Chris S. M. Turney; Elisabeth Isaksson; Marit-Solveig Seidenkrantz; Andrew D. Moy; Mirko Severi; Helen V. McGregor; Johannes P. Werner; Lucien von Gunten; Kristine L. DeLong; Philipp Munz; Steven J. Phipps; Dmitriy V. Ovchinnikov; Nicholas P. McKay; Andre Ernest J. Viau; Anne Hormes; Hans Oerter; Kazuho Horiuchi

PAGES, a core project of Future Earth, is supported by the U.S. and Swiss National Science Foundations. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Some of this work was conducted as part of the North America 2k Working Group supported by the John Wesley Powell Center for Analysis and Synthesis, funded by the U.S. Geological Survey. B. Bauer, W. Gross, and E. Gille (NOAA National Centers for Environmental Information) are gratefully acknowledged for helping assemble the data citations and creating the NCEI versions of the PAGES 2k data records. We thank all the investigators whose commitment to data sharing enables the open science ethos embodied by this project.


Progress in Physical Geography | 2017

Reconstructions of the southern annular mode (SAM) during the last millennium

Amy E. Hessl; Kathryn Allen; Tr Vance; Nerilie J. Abram; Krystyna M. Saunders

The leading mode of atmospheric variability in the Southern Hemisphere is the Southern Annular Mode (SAM), which affects the atmosphere and ocean from the mid-latitudes to the Antarctic. However, the short instrumental record of the SAM does not adequately represent its multi-decadal to centennial-scale variability. Long palaeoclimatic reconstructions of the SAM would improve our understanding of its low frequency behavior and its effects on regional temperature, rainfall, sea ice, and ecosystem processes. In this progress report, we review three published palaeoclimatic reconstructions available for understanding multi-decadal to centennial-scale variability of the SAM. Reconstructions reviewed here show similar patterns of decadal SAM variability during the last two centuries, but earlier centuries are less coherent. Reconstructions clearly maintain similar trends towards more positive SAM states since the onset of significant anthropogenic climate forcing from rising greenhouse gas (GHG) concentrations and ozone depletion and these excursions appear unprecedented over at least the last 500 years. We describe how new multi-proxy reconstructions of the SAM could further improve our understanding of its long-term variability and effects across all geographic sectors of the Southern Hemisphere. Here, we recommend careful selection and development of proxies in SAM-sensitive regions and seasons. In particular, proxies related to cool-season conditions and from the poorly-sampled Indian Ocean sector would allow for a true circumpolar and year-round reconstruction of past SAM variability.


Archive | 2017

Paleoecological Evidence for Variability and Change in Estuaries: Insights for Management

Krystyna M. Saunders; Peter Gell

Misuse of land and water resources has led to the degradation of many estuaries. As a result, present day management often focuses on developing strategies to reverse or contain these environmental impacts. However, a lack of long-term data on pre-impact conditions makes it difficult to define management goals and assess if management strategies have been, or are likely to be successful. Paleoecology is a useful tool in environmental management as it allows natural variability, pre-impact conditions, the rate, extent, direction and causes of change, and ecosystem responses to remediation and restoration attempts to be assessed. Paleoecological techniques have improved markedly during recent decades, particularly with regard to methodological advances, which allow studies to be tailored to estuarine management programs. What remains is for contemporary management approaches to consider the lessons available from historical change documented through paleoecology. This chapter outlines ways in which paleoecological approaches may be applied to estuarine management and the considerations for their integration into direct management outcomes.

Collaboration


Dive into the Krystyna M. Saunders's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nerilie J. Abram

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brent B. Wolfe

Wilfrid Laurier University

View shared research outputs
Top Co-Authors

Avatar

Atun Zawadzki

Australian Nuclear Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge