Krzysztof Fortuniak
University of Łódź
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Krzysztof Fortuniak.
Climatic Change | 1999
Pavel Ya. Groisman; Thomas R. Karl; David R. Easterling; Richard W. Knight; Paul Jamason; Kevin Hennessy; Ramasamy Suppiah; Cher Page; Joanna Wibig; Krzysztof Fortuniak; Vyacheslav N. Razuvaev; Arthur V. Douglas; Eirik J. Førland; P. Zhai
A simple statistical model of daily precipitation based on the gamma distribution is applied to summer (JJA in Northern Hemisphere, DJF in Southern Hemisphere) data from eight countries: Canada, the United States, Mexico, the former Soviet Union, China, Australia, Norway, and Poland. These constitute more than 40% of the global land mass, and more than 80% of the extratropical land area. It is shown that the shape parameter of this distribution remains relatively stable, while the scale parameter is most variable spatially and temporally. This implies that the changes in mean monthly precipitation totals tend to have the most influence on the heavy precipitation rates in these countries. Observations show that in each country under consideration (except China), mean summer precipitation has increased by at least 5% in the past century. In the USA, Norway, and Australia the frequency of summer precipitation events has also increased, but there is little evidence of such increases in any of the countries considered during the past fifty years. A scenario is considered, whereby mean summer precipitation increases by 5% with no change in the number of days with precipitation or the shape parameter. When applied in the statistical model, the probability of daily precipitation exceeding 25.4 mm (1 inch) in northern countries (Canada, Norway, Russia, and Poland) or 50.8 mm (2 inches) in mid-latitude countries (the USA, Mexico, China, and Australia) increases by about 20% (nearly four times the increase in mean). The contribution of heavy rains (above these thresholds) to the total 5% increase of precipitation is disproportionally high (up to 50%), while heavy rain usually constitutes a significantly smaller fraction of the precipitation events and totals in extratropical regions (but up to 40% in the tropics, e.g., in southern Mexico). Scenarios with moderate changes in the number of days with precipitation coupled with changes in the scale parameter were also investigated and found to produce smaller increases in heavy rainfall but still support the above conclusions. These scenarios give changes in heavy rainfall which are comparable to those observed and are consistent with the greenhouse-gas-induced increases in heavy precipitation simulated by some climate models for the next century. In regions with adequate data coverage such as the eastern two-thirds of contiguous United States, Norway, eastern Australia, and the European part of the former USSR, the statistical model helps to explain the disproportionate high changes in heavy precipitation which have been observed.
Journal of Applied Meteorology and Climatology | 2010
C. S. B. Grimmond; Matthew Blackett; M. J. Best; Janet F. Barlow; Jong-Jin Baik; Stephen E. Belcher; Sylvia I. Bohnenstengel; I. Calmet; Fei Chen; A. Dandou; Krzysztof Fortuniak; M.L. Gouvea; Rafiq Hamdi; M. Hendry; T. Kawai; Y. Kawamoto; Hiroaki Kondo; E. S. Krayenhoff; S. H. Lee; Thomas Loridan; Alberto Martilli; Valéry Masson; Shiguang Miao; Keith W. Oleson; G. Pigeon; Aurore Porson; Young Hee Ryu; Francisco Salamanca; L. Shashua-Bar; G.J. Steeneveld
A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no comparison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling approaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux.
Journal of Applied Meteorology and Climatology | 2006
Brian Offerle; C. S. B. Grimmond; Krzysztof Fortuniak; W. Pawlak
Abstract Surface properties, such as roughness and vegetation, which vary both within and between urban areas, play a dominant role in determining surface–atmosphere energy exchanges. The turbulent heat flux partitioning is examined within a single urban area through measurements at four locations in Łodź, Poland, during August 2002. The dominant surface cover (land use) at the sites was grass (airport), 1–3-story detached houses with trees (residential), large 2–4-story buildings (industrial), and 3–6-story buildings (downtown). However, vegetation, buildings, and other “impervious” surface coverage vary within some of these sites on the scale of the turbulent flux measurements. Vegetation and building cover for Łodź were determined from remotely sensed data and an existing database. A source-area model was then used to develop a lookup table to estimate surface cover fractions more accurately for individual measurements. Bowen ratios show an inverse relation with increasing vegetation cover both for a s...
Archive | 2009
C. S. B. Grimmond; M. J. Best; Janet F. Barlow; A. J. Arnfield; Jong-Jin Baik; A. Baklanov; Stephen E. Belcher; M. Bruse; I. Calmet; Fei Chen; Peter A. Clark; A. Dandou; Evyatar Erell; Krzysztof Fortuniak; Rafiq Hamdi; Manabu Kanda; T. Kawai; Hiroaki Kondo; S. Krayenhoff; S. H. Lee; S.-B. Limor; Alberto Martilli; Valéry Masson; Shiguang Miao; Gerald Mills; R. Moriwaki; Keith W. Oleson; Aurore Porson; U. Sievers; M. Tombrou
Many urban surface energy balance models now exist. These vary in complexity from simple schemes that represent the city as a concrete slab, to those which incorporate detailed representations of momentum and energy fluxes distributed within the atmospheric boundary layer. While many of these schemes have been evaluated against observations, with some models even compared with the same data sets, such evaluations have not been undertaken in a controlled manner to enable direct comparison. For other types of climate model, for instance the Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) experiments (Henderson-Sellers et al., 1993), such controlled comparisons have been shown to provide important insights into both the mechanics of the models and the physics of the real world. This paper describes the progress that has been made to date on a systematic and controlled comparison of urban surface schemes. The models to be considered, and their key attributes, are described, along with the methodology to be used for the evaluation.
Bulletin of the American Meteorological Society | 2017
Janet F. Barlow; M. J. Best; Sylvia I. Bohnenstengel; Peter A. Clark; Sue Grimmond; Humphrey W. Lean; Andreas Christen; Stefan Emeis; Martial Haeffelin; Ian N. Harman; Aude Lemonsu; Alberto Martilli; Eric R. Pardyjak; Mathias W. Rotach; Susan P. Ballard; Ian A. Boutle; A. R. Brown; Xiaoming Cai; M Carpentieri; Omduth Coceal; Ben Crawford; Silvana Di Sabatino; JunXia Dou; Daniel R. Drew; John M. Edwards; Joachim Fallmann; Krzysztof Fortuniak; Jemma Gornall; Tobias Gronemeier; Christos Halios
A Met Office/Natural Environment Research Council Joint Weather and Climate Research Programme workshop brought together 50 key international scientists from the UK and international community to formulate the key requirements for an Urban Meteorological Research strategy. The workshop was jointly organised by University of Reading and the Met Office.
Boundary-Layer Meteorology | 2015
Krzysztof Fortuniak; Włodzimierz Pawlak
We present the turbulence spectra and cospectra derived from more than five years of eddy-covariance measurements at two urban sites in Łódź, central Poland. The fast response wind velocity components were obtained using sonic anemometers placed on narrow masts at 37 and 42 m above ground level. The analysis follows Kaimal et al. (Q J R Meteorol Soc 98:563–589, 1972) who established the spectral and cospectral properties of turbulent flow in atmospheric surface layer on the basis of the Kansas experiment. Our results illustrate many features similar to those of Kaimal et al., but some differences are also observed. The velocity (co)spectra from Łódź show a clear inertial subrange with
Polar Research | 2011
Ewa Bednorz; Krzysztof Fortuniak
Journal of Climate | 2018
Mateusz Taszarek; Harold E. Brooks; Bartosz Czernecki; Piotr Szuster; Krzysztof Fortuniak
-2/3
Contemporary Trends in Geoscience | 2012
Mariusz Zieliński; Krzysztof Fortuniak; Włodzimierz Pawlak
Boundary-Layer Meteorology | 2018
Mariusz Zieliński; Krzysztof Fortuniak; Włodzimierz Pawlak; Mariusz Siedlecki
-2/3 slope for spectra and