Krzysztof Tokarz
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Krzysztof Tokarz.
Physiologia Plantarum | 2012
Karin Krupinska; Maria Mulisch; Julien Hollmann; Krzysztof Tokarz; Wiebke Zschiesche; Henning Kage; Klaus Humbeck; Wolfgang Bilger
Changes in function and composition of the photosynthetic apparatus as well as the ultrastructure of chloroplasts in mesophyll cells were analyzed in flag leaves of the high-yield barley (Hordeum vulgare) variety cv. Lomerit during senescence under field conditions in two successive years. In contrast to previous results obtained with the elder variety cv. Carina photosystem II efficiency measured by F(v)/F(m) was found to be rather stable until a very late stage of senescence. Chlorophyll a fluorescence and P700 absorbance measurements revealed that the activities of the two photosystems declined in parallel. An increase in the chlorophyll a/b ratio at a late stage of senescence was observed to coincide with a decline in the level of the Lhcb1 apoprotein of the light harvesting complex (LHC) and the level of the corresponding transcript. Ultrastructural investigations revealed the presence of gerontoplasts that have long, single or pairwise thylakoids and lack large grana stacks. It is hypothesized that the early degradation of grana thylakoids harboring the major LHC reduced the risk of photoinhibition and might be causally related to the high yield of the barley variety cv. Lomerit.
Journal of Plant Physiology | 2013
Ewa Gajewska; Ewa Niewiadomska; Krzysztof Tokarz; Mirosława Słaba; Maria Skłodowska
In this study, we analyzed the toxic effect of Ni during the development of wheat shoots. Typical developmental alterations in carbon metabolism-related parameters reflecting changes associated with the transition of the seedlings from heterotrophic to autotrophic metabolism were observed in the control shoots between the 1st and the 4th days. Adverse effects of 50 and 100 μM Ni became evident starting from the 4th day of growth on the metal-containing media. We found that Ni-induced stimulation of phosphoenolpyruvate carboxylase (PEPC) activity coincided with decrease in the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) level and with declines in net photosynthetic rate (P(N)) and stomatal conductance (g(s)). Application of Ni resulted in increased activities of several dehydrogenases: glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), isocitrate dehydrogenase (NADP-ICDH) and malate dehydrogenase (NADH-MDH). In contrast, the activities of malic enzymes (NADP-ME and NAD-ME) decreased due to Ni stress. Treatment with Ni led to accumulation of glucose and declined concentration of sucrose as well as considerable increases in concentrations of malic and citric acids. Our results indicate that Ni stress redirects the carbon metabolism of developing wheat shoots to provide carbon skeletons for synthesis of amino acids and organic acids as well as to supply reducing power to sustain normal metabolic processes and to support defense mechanisms against oxidative stress.
Acta Physiologiae Plantarum | 2005
Krzysztof Tokarz; Jan Pilarski
Optical properties and changes in the content of photosynthetic pigments (chlorophyll and total carotenoids) were investigated in the bark and leaves of the apple-tree during a year.Optical properties of stems change with their age. Light reflectance of current year stems equalled 14.2%, while the one for 3-year-old stems decreased to 10.2%, absorption for the current year stems equalled 55.5% and increased up to 66.4% for 3-year-old ones. Light transmittance for the cork of current year stems equalled 30.2%, and decreased with the age of stems reaching 23.4% for the 3-year-old ones. The cork transmitted less than 5% of light of 400 nm, but the transmittance increased with the increase in the wavelength up to 55% at 700 nm. The reflectance of light by the leaf equalled 6.9%, absorption 89.7%, and transmittance 3.4%.In August the highest amount of chlorophyll pigments (6.2 mg·dm−2) and carotenoids (1.63 mg·dm−2) was detected in the leaves of the apple-tree, however, the ratio of chl a/b reached the highest value 4.12 in June.For the bark of apple-tree stems the content of chlorophyll pigments increased since spring and reached the maximum content of about 2.8 mg(chl)·dm−2 for 1-3-year-old stems in the summer months, while for the current year stems in October. The ratio chl a/b was at the same level, about 2.2 during the whole year. The content of carotenoids was lower in stems than in leaves and was at the similar level during the year, however, it increased with the age of stems.Minor changes in the optical properties and the content of photosynthetic pigments occurring with the age of stems may be due to the low increment in cork thickness in the studied age groups of plants.
Acta Physiologiae Plantarum | 2006
Jan Pilarski; Krzysztof Tokarz
The distribution of chlorophyll was examined in cross-sections of 2- and 6-year-old stems as well as in the bark of the stump trunk of beech trees, utilising chlorophyll autofluorescence. The investigations were conducted using a confocal microscope. The tests carried out on 2 – 6-year old stems showed a large presence of chlorophyll in the bark, in primary and secondary rays as well as in the pith, but smaller amounts in wood parenchyma cells. There was no chlorophyll in the cork, sclerenchyma: in wood in vessels, tracheids and fibers. A reduction in the chlorophyll content in 6-year-old stems was not observed. In the bark of the trunk, chlorophyll was found in large amounts directly under the cork and in vestigial amounts in the primary phloem.
Journal of Plant Physiology | 2014
Elżbieta Golemiec; Krzysztof Tokarz; Marzena Wielanek; Ewa Niewiadomska
Ethylene and hydrogen peroxide are involved in the modulation of stress responses in plants, but their interrelation is not well understood. This work was designed to find differences between the actions of ethylene and H2O2 on antioxidants and senescence markers. Leaves of Nicotiana tabacum were sprayed with H2O2 or with ethephon (precursor of ethylene). To find the possible modulation of responses to acute abiotic stress, ethephon- and H2O2-sprayed leaves were further subjected to high irradiance (HL). The application of H2O2 strongly stimulated ethylene synthesis (ACC). Ethylene and H2O2, as single factors, stimulated the trolox equivalent antioxidant capacity (TEAC) and the activity of catalase (CAT), in contrast to HL alone (stimulation of nonspecific peroxidases and the total glutathione pool). However, after combined treatments (ethylene+HL and H2O2+HL), the stimulatory action of H2O2 was related to TEAC and CAT activity, while the application of ethylene stimulated the total glutathione pool. Hydrogen peroxide enhanced the expression of the three CAT genes (Cat1, Cat2 and Cat3), in contrast to ethylene (Cat2 and Cat3) and HL (Cat1). In regard to the markers of senescence and pathogenesis the most pronounced difference between the actions of ethylene and H2O2, as single factors, was related to NPR1, whereas when leaf spraying was combined with HL, differences were found at WRKY53 and PR1a. HL reversed the stimulatory effects of H2O2/ethylene-driven enhancements of the expression of several genes (Cat1, Cat2, NPR1, WRKY53). These results show that multiple stressors, as usually encountered by plants in nature, may largely change those expression patterns of genes determined in a single factor analysis. Moreover, the actions of HL (often considered the internal H2O2 trigger) and of exogenous H2O2 on gene expression are clearly different.
Archive | 2013
Krzysztof Tokarz; Jan Pilarski; Maciej Kocurek
The development of stem and leaf surface areas were studied comparatively throughout a year’s cycle, and the proportions of these areas within the total area of trees were calculated. Depending on the variety, the total surface areas of trees: all branches, boughs and tree trunks after winter pruning, ranged from 27 dm2 to 118 dm2. At the beginning of the vegetation season, the proportion of leaves in newly developed stems amounted to 90%–92%, and the proportion of these new stems was 8%–10%. Later in the vegetation season, the leaf area amounted to 83%–89%, and that of new stems 11%–17%, and there were no differences between the varieties. Towards the end of the vegetation season, total leaf area on a tree ranged from 110–120 dm2 to 296 dm2, whereas the area of newly grown stems ranged from 42 dm2 to 168 dm2.
Annals of Botany | 2007
Tomasz Hura; S. Grzesiak; Katarzyna Hura; Elisabeth Thiemt; Krzysztof Tokarz; Maria Wędzony
Trees-structure and Function | 2015
Maciej Kocurek; Andrzej Kornas; Jan Pilarski; Krzysztof Tokarz; Ulrich Lüttge; Zbigniew Miszalski
Folia Horticulturae | 2007
Jan Pilarski; Krzysztof Tokarz; Maciej Kocurek
Acta Physiologiae Plantarum | 2009
Jan Pilarski; Maciej Kocurek; Krzysztof Tokarz