Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Grzesiak is active.

Publication


Featured researches published by S. Grzesiak.


Photosynthetica | 2006

Changes of leaf water potential and gas exchange during and after drought in triticale and maize genotypes differing in drought tolerance

M.T. Grzesiak; S. Grzesiak; Andrzej Skoczowski

Influence of drought (D) on changes of leaf water potential (Ψ) and parameters of gas exchange in D-resistant and D-sensitive genotypes of triticale and maize was compared. Soil D (from −0.01 to −2.45 MPa) was simulated by mannitol solutions. At −0.013 MPa significant differences in Ψ, net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), and internal CO2 concentration (Ci) of D-resistant and D-sensitive triticale and maize genotypes were not found. Together with the increase in concentration of the mannitol solution the impact of D on E and gs for D-sensitive genotypes (CHD-12, Ankora) became lower than for the D-resistant ones (CHD-247, Tina). Inversely, impact of D on Ψ was higher in D-sensitive than D-resistant genotypes. From 1 to 3 d of D, a higher decrease in PN was observed in D-resistant genotypes than in the D-sensitive ones. Under prolonged D (5–14 d) and simultaneous more severe D the decrease in PN was lower in D-resistant than in D-sensitive genotypes. Changes in Ψ, PN, E, and gs caused by D in genotypes differing in the drought susceptibility were similar for triticale and maize. Compared to control plants, increase of Ci was different for triticale and maize genotypes. Hence one of the physiological reasons of different susceptibility to D between sensitive and resistant genotypes is more efficient protection of tissue water status in resistant genotypes reflected in higher decrease in gs and limiting E compared to the sensitive ones. Other reason, observed in D-resistant genotypes during the recovery from D-stress, was more efficient removal of detrimental effects of D.


Journal of Plant Physiology | 2009

Possible contribution of cell-wall-bound ferulic acid in drought resistance and recovery in triticale seedlings.

Tomasz Hura; Katarzyna Hura; S. Grzesiak

Studies were undertaken to estimate whether the presence of free and cell-wall-bound ferulic acid in leaf tissues can support drought resistance and its recovery under rehydration. An experiment was carried out on two genotypes of winter triticale: Lamberto and Ticino, at the propagation phase. Lamberto exhibited high content of ferulic acid bound with carbohydrates of the cell-wall under drought and rehydration. The markedly better parameters of chlorophyll fluorescence for this variety under both treatments correlated strongly and positively with the high contents of cell-wall-bound ferulic acid. The photosynthetic apparatus of Lamberto, in relation to Ticino, proved to be the more efficient after 4 weeks of drought treatment. The after-effects of soil drought better elicited the function disturbances of the photosynthetic apparatus in Ticino, which did not fully recover in comparison to Lamberto. Ferulic acid covalently bound to carbohydrates of the cell wall may act as a light filter limiting mesophyll penetration under drought conditions and can also support drought adaptation by down-regulation of leaf growth. The observed increase in the content of cell-wall-bound ferulic acid, as a response to water deficit in the leaf, could be one of the protective mechanisms induced by drought conditions. The ability to accumulate phenolic compounds in dehydrated leaves might be an additional and reliable biochemical parameter indicating the resistance of plants to drought stress.


Acta Physiologiae Plantarum | 2001

Genotypic variation between maize [Zea mays L.] single cross hybrids in response to drought stress

S. Grzesiak

Effects of soil drought on growth and productivity of 16 single cross maize hybrids were investigated under field and greenhouse experiments. The Drought Susceptibility Index (DSI) was evaluated in a three year field experiment by the determination of grain loss in conditions of two soil moisture levels (drought and irrigated) and in a pot experiment by the effects of periodical soil drought on seedling dry matter. In the greenhouse experiment response to drought in maize genotypes was also evaluated by root to shoot dry mater ratio, transpiration productivity index, indexes of kernel germination and index of leaf injury by drought and heat temperature. The obtained values of DSI enabled the ranking of the tested genotypes with respect to their drought tolerance. The values of DSI obtained in the field experiment allow to divide the examined genotypes into three, and in the greenhouse experiment into two groups of drought susceptibility. The correlation coefficients between the DSI of maize hybrids in the field and the greenhouse experiments was high and statistically significant, being equal to 0.876. The ranking of hybrids drought tolerance, identified on the basis of field experiments was generally in agreement with the ranking established on the basis of the greenhouse experiment. In the greenhouse experiment statistically significant coefficients of correlation with DSI values in hybrids were obtained for the ratio of dry matter of overground parts to dry matter of roots, both for control and drought treatments, whereas in the estimation of the transpiration productivity coefficient and total dry matter the correlation coefficients were not statistically significant. In this study several laboratory tests were carried out for the drought tolerance of plants (kernel germination, leaf injury) on 4 drought resistant and 4 drought sensitive maize hybrids. Statistically significant correlation coefficients between DSI and the examined parameter of grain germination and leaf injury were obtained for the determination of promptness index (PI), seedling survival index (SS) and leaf injuries indexes (IDS, ITS) as a result of exposure to 14 days of soil drought, osmotic drought −0.9 MPa and exposure to high temperature 45 ° or 50 °C. The results of laboratory tests show that in maize the genetic variation in the degree of drought tolerance is better manifested under severe conditions of water deficit in the soil.


International Journal of Molecular Sciences | 2013

Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

Izabela Marcińska; Ilona Czyczyło-Mysza; Edyta Skrzypek; Maciej T. Grzesiak; Franciszek Janowiak; Maria Filek; Michał Dziurka; Kinga Dziurka; Piotr Waligórski; Katarzyna Juzoń; Katarzyna Cyganek; S. Grzesiak

The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 μM) to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity.


Acta Physiologiae Plantarum | 2003

Evaluation of physiological screening tests for breeding drought resistant triticale [x Triticosecale Wittmack]

S. Grzesiak; Maciej T. Grzesiak; W. Filek; Joanna Stabryła

Effects of soil drought on crop yield of 4 strains and 7 cultivars of spring triticale was investigated under field condition. The Drought Susceptibility Index (DSI) was evaluated in a two year experiment by the determination of grain loss in conditions of two soil moisture levels (drought-D and irrigated-IR). In the experiment response to drought was evaluated by different screening tests (leaf gaseous exchange, leaf water potential, chlorophyll content and fluorescence, leaf injury by drought and by simulated drought and heat temperature and water loss by excited leaf. The DSI values and the results of screening tests showed the genetic variation in the degree of drought tolerance. The values of DSI enabled the ranking of the tested triticale genotypes with respect to their drought tolerance and allow to divide them into three groups of drought susceptibility. Large differences among studied forms were observed also in changes of leaf water potential, fluorescence and leaf injury. For plants in vegetative stage of growth the tested breeding forms were easily separated into groups of different drought tolerance. Changes of ψ, Fv/Fm and LI as a screening tests were the most suitable techniques for estimation of degree of drought tolerance for triticale. Laboratory screening tests (leaf injury by simulated drought (LIDS) and high temperature (LIHT) and water loss (WL) of excited leaf conducted for nonstressed plants in most cases were significantly correlated with DSI. The statistically significant correlation between leaf water potential (ψ) was observed only with leaf fluorescence (Fv/Fm). Changes of Fv/Fm were significantly correlated with ψ, LI and LIHT for 50 °C. Index of leaf injury (LI) by soil drought were significantly correlated with Fv/Fm, LIDS (−1.0, −1.5 MPa), LIHT (45 and 50°C) and water loss (WL). The correlation coefficient between the tests LIDS and LIHT were most of the considered cases statistically significant which indicate that the mechanism of membranes injury resulted from simulated drought or high temperature were similar in triticale. Water loss (WL) of excited leaves was the most suitable test for screening drought tolerance in triticale population. Changes of gaseous exchange parameters were not useful as screening test in this research.


Plant Physiology and Biochemistry | 2009

Physiological and biochemical parameters for identification of QTLs controlling the winter triticale drought tolerance at the seedling stage

Tomasz Hura; Katarzyna Hura; S. Grzesiak

The genetic map of the triticale is created on the basis of double-haploid (DH) lines, derived from F1 hybrids of a cross between the parental line Saka3006 and Modus. In order to localise drought resistance genes, it is necessary to find a phenotype feature which clearly differentiates between parental lines under drought stress conditions. With the future in mind, the aim of the presented studies was to analyse differences in the response to drought stress, between Saka3006 and Modus. Analyses of the water status of leaves, and the activity of the photosynthetic apparatus and protective mechanisms relating to the accumulation of phenolic compounds, were carried out. The studies were completed during the tillering phase. Statistically significant changes, between genotypes experiencing the drought period, were noticed for the osmotic potential, leaf water content, some parameters of chlorophyll fluorescence, and for phenolics and the ferulic acid content. On the basis of the studies, the Saka genotype can be considered drought resistant due to higher leaf water content caused, probably, by smaller hydraulic resistance relative to Modus. The activity of its photosynthetic apparatus during drought was higher than that for the Modus genotype. The high level of phenolic compounds, which can act as photoprotectors and free radical scavengers, was also maintained. All the mentioned parameters can represent the potential phenotype features, which allow the identification of resistance genes on the genetic map of the triticale, which is currently being created.


Acta Physiologiae Plantarum | 2006

Differences in the physiological state between triticale and maize plants during drought stress and followed rehydration expressed by the leaf gas exchange and spectrofluorimetric methods

Tomasz Hura; S. Grzesiak; Katarzyna Hura; Maciej T. Grzesiak; Andrzej Rzepka

The studies were carried out in order to estimate differences in the physiological state between triticale and maize plants subjected to drought stress followed by rehydration. The physiological state of the plants was evaluated by measurements of leaf water potential, net photosynthesis, transpiration and stomatal conductance. Spectrofluorimetric methods for the study of blue, green and red fluorescence were applied.We observed that the soil drought induced a greater water loss in triticale leaves than in maize and consequently caused greater injuries to the photosynthetic apparatus. Moreover, triticale plant recovery was slower than in maize plants during the rehydration phase. The effect was probably connected with the higher functional and structural disorganisation of the photosynthetic apparatus observed during drought stress in triticale. Water stress is responsible for damages to photosystem PS II. The worst light utilisation in photosynthetic light conversion was recorded as an increase in the intensity of red fluorescence. Drought stress induced a strong increase in the intensity of blue and green fluorescence in the studied species and it was still high in maize plants during the first day of rehydration. Increase in the intensity of blue and green fluorescence in maize seems to be the effect of the photoprotection mechanism which prevents damage to PS II through utilisation of excess energy.


Acta Physiologiae Plantarum | 1997

Differences in drought tolerance between cultivars of field bean and field pea. A comparison of drought-resistant and drought-sensitive cultivars

S. Grzesiak; Morio Iijima; Yasuhiro Kono; Akira Yamauchi

Relatively little research has been conducted to determine different responses to drought among cultivars of the legume species. The objective of this study was to identify differences in seedlings growth, water relations and leaf conductances resulting from drought imposed on two field bean and two field pea cultivars that had been observed to differ in their drought tolerances, and special emphasis was placed on the root system development.Distinct differences between resistant and sensitive cultivars of field bean and field pea became evident in measurements of the characteristics of the lateral root. The drought treatment induced statistically significant decrease in the number of the developed laterals, their total length and dry matter. In the drought resistant cultivars (field bean Gobo and field pea Solara) this reduction was smaller in comparison with sensitive ones (field bean Victor and field pea Bareness). The effect of drought on growth of tap root in the drought resistant and drought sensitive cultivars was smaller and statistically not significant. The results showed that drought resistant cultivars when compared with drought sensitive one would demonstrate less abundance in the above-ground part and greater dimensions of the root system.The measurements of leaf water potential and stomata diffusive resistance measurements indicate that the physiological reasons for the different reactions to drought between the resistant and the sensitive field bean and field pea cultivars may be due to a more effective protection of the level of tissue hydration and due to increase stomata diffusive resistance in the resistant cultivars. During recovery period it has been also demonstrated that in the drought resistant cultivars a tendency exists for a more complete return to the level of the control plants.


Zeitschrift für Naturforschung C | 2009

Leaf Dehydration Induces Different Content of Phenolics and Ferulic Acid in Drought-Resistant and -Sensitive Genotypes of Spring Triticale

Tomasz Hura; Katarzyna Hura; S. Grzesiak

Analyses of the total pool of phenolic compounds and ferulic acid, as a photoprotector of the photosynthetic apparatus, and the activity of L-phenylalanine ammonia-lyase (PAL), as a key enzyme in phenolics synthesis, were carried out. Measurements were performed on drought-resistant (CHD 12, CHD 147) and -sensitive (CHD 220, CHD 247) genotypes of spring triticale during flowering under increasing leaf water deficit. Additionally, the emission of blue and red fluorescence from leaves were estimated. The exclusively in the resistant triticale genotype CHD 247 observed simultaneous increase in the content of ferulic acid and the total pool of phenolic compounds as a response to the leaf water deficit seems to be a promising biochemical indicator for a reliable selection of genotypes most resistant to drought stress. For the other genotypes, an increase in the total pool of phenolic compounds is accompanied by a decrease in the content of ferulic acid. An increase in the emission of red fluorescence, correlated with the high content of phenolic compounds, indicates the possibilities of these substances participating in the mechanisms of adaptation of the photosynthetic apparatus to water deficit in leaf tissues.


Acta Physiologiae Plantarum | 2002

The impact of different soil moisture and soil compaction on the growth of triticale root system

S. Grzesiak; Maciej T. Grzesiak; W. Filek; Tomasz Hura; Joanna Stabryła

Effects of different soil moisture (soil drought and waterlogging) and soil compaction (1.33 and 1.50 g·cm−3) on the growth and morphological traits of the root system were studied in four breeding forms and seven cultivars of triticale. Morphological changes, including the restriction of root extension, expansion and proliferation of laterals roots, occur in plants grown in different soil moisture and in compact soil. The investigations comprised quantitative and qualitative analyses of a developed plant root system through determining the number, length and dry matter of the particular components of the root system.Obtained results have demonstrated a relatively broad variation in the habit of the triticale root system. Plants grown under compact soil and low or high soil water content showed a smaller number and less dry matter of lateral branching than plants grown in control conditions. The harmful effects of compact soil and drought conditions on the growth of roots was greater when compared with that of plants exposed to waterlogging. The observed effects of all treatments were more distinct in a drought sensitive strains. The drought resistant forms were a more characterize with extensive rooting and by smaller alterations in the root morphology under the stress conditions compared with drought sensitive one. Results confirm that the breeding forms (CHD-12 and CHD-173) of a high drought susceptibility was found to be also more sensitive to periodical soil water excess. A more efficient water use and a lower shoot to root (S/R) ratio were found to be major reasons for a higher stress resistance of the breeding forms (CHD-220 and CHD-247). The reasons for a different response of the examined breeding forms and cultivars to the conditions of drought or waterlogging may be a more economical water balance and more favourable relations between the shoot and root dimensions in the drought resistant forms and cultivars. The results suggest that the morphological traits of the triticale root system may be used in practice as direct or indirect selection criteria in maize breeding.

Collaboration


Dive into the S. Grzesiak's collaboration.

Top Co-Authors

Avatar

Tomasz Hura

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katarzyna Hura

University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Filek

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edyta Skrzypek

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge