Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kuan Yen Tan is active.

Publication


Featured researches published by Kuan Yen Tan.


Nature | 2012

A single-atom electron spin qubit in silicon

Jarryd Pla; Kuan Yen Tan; Juan P. Dehollain; Wee Han Lim; John J. L. Morton; D.N. Jamieson; Andrew S. Dzurak; Andrea Morello

A single atom is the prototypical quantum system, and a natural candidate for a quantum bit, or qubit—the elementary unit of a quantum computer. Atoms have been successfully used to store and process quantum information in electromagnetic traps, as well as in diamond through the use of the nitrogen–vacancy-centre point defect. Solid-state electrical devices possess great potential to scale up such demonstrations from few-qubit control to larger-scale quantum processors. Coherent control of spin qubits has been achieved in lithographically defined double quantum dots in both GaAs (refs 3–5) and Si (ref. 6). However, it is a formidable challenge to combine the electrical measurement capabilities of engineered nanostructures with the benefits inherent in atomic spin qubits. Here we demonstrate the coherent manipulation of an individual electron spin qubit bound to a phosphorus donor atom in natural silicon, measured electrically via single-shot read-out. We use electron spin resonance to drive Rabi oscillations, and a Hahn echo pulse sequence reveals a spin coherence time exceeding 200 µs. This time should be even longer in isotopically enriched 28Si samples. Combined with a device architecture that is compatible with modern integrated circuit technology, the electron spin of a single phosphorus atom in silicon should be an excellent platform on which to build a scalable quantum computer.


Nature | 2010

Single-shot readout of an electron spin in silicon

Andrea Morello; Jarryd Pla; Floris A. Zwanenburg; Kok Wai Chan; Kuan Yen Tan; Hans Huebl; Mikko Möttönen; Christopher Nugroho; Changyi Yang; Jessica van Donkelaar; Andrew Alves; D.N. Jamieson; C. C. Escott; Lloyd C. L. Hollenberg; R. G. Clark; Andrew S. Dzurak

The size of silicon transistors used in microelectronic devices is shrinking to the level at which quantum effects become important. Although this presents a significant challenge for the further scaling of microprocessors, it provides the potential for radical innovations in the form of spin-based quantum computers and spintronic devices. An electron spin in silicon can represent a well-isolated quantum bit with long coherence times because of the weak spin–orbit coupling and the possibility of eliminating nuclear spins from the bulk crystal. However, the control of single electrons in silicon has proved challenging, and so far the observation and manipulation of a single spin has been impossible. Here we report the demonstration of single-shot, time-resolved readout of an electron spin in silicon. This has been performed in a device consisting of implanted phosphorus donors coupled to a metal-oxide-semiconductor single-electron transistor—compatible with current microelectronic technology. We observed a spin lifetime of ∼6 seconds at a magnetic field of 1.5 tesla, and achieved a spin readout fidelity better than 90 per cent. High-fidelity single-shot spin readout in silicon opens the way to the development of a new generation of quantum computing and spintronic devices, built using the most important material in the semiconductor industry.


Nature | 2013

High-fidelity readout and control of a nuclear spin qubit in silicon

Jarryd Pla; Kuan Yen Tan; Juan P. Dehollain; Wee Han Lim; John J. L. Morton; Floris A. Zwanenburg; D.N. Jamieson; Andrew S. Dzurak; Andrea Morello

Detection of nuclear spin precession is critical for a wide range of scientific techniques that have applications in diverse fields including analytical chemistry, materials science, medicine and biology. Fundamentally, it is possible because of the extreme isolation of nuclear spins from their environment. This isolation also makes single nuclear spins desirable for quantum-information processing, as shown by pioneering studies on nitrogen-vacancy centres in diamond. The nuclear spin of a 31P donor in silicon is very promising as a quantum bit: bulk measurements indicate that it has excellent coherence times and silicon is the dominant material in the microelectronics industry. Here we demonstrate electrical detection and coherent manipulation of a single 31P nuclear spin qubit with sufficiently high fidelities for fault-tolerant quantum computing. By integrating single-shot readout of the electron spin with on-chip electron spin resonance, we demonstrate quantum non-demolition and electrical single-shot readout of the nuclear spin with a readout fidelity higher than 99.8 per cent—the highest so far reported for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radio-frequency pulses. For an ionized 31P donor, we find a nuclear spin coherence time of 60 milliseconds and a one-qubit gate control fidelity exceeding 98 per cent. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear-spin-based quantum-information processing.


Nano Letters | 2010

Transport Spectroscopy of Single Phosphorus Donors in a Silicon Nanoscale Transistor

Kuan Yen Tan; Kok Wai Chan; Mikko Möttönen; Andrea Morello; Changyi Yang; Jessica van Donkelaar; Andrew Alves; Juha-Matti Pirkkalainen; D.N. Jamieson; R. G. Clark; Andrew S. Dzurak

We have developed nanoscale double-gated field-effect-transistors for the study of electron states and transport properties of single deliberately implanted phosphorus donors. The devices provide a high-level of control of key parameters required for potential applications in nanoelectronics. For the donors, we resolve transitions corresponding to two charge states successively occupied by spin down and spin up electrons. The charging energies and the Lande g-factors are consistent with expectations for donors in gated nanostructures.


Nature Communications | 2017

Quantum-circuit Refrigerator

Kuan Yen Tan; Matti Partanen; Russell Lake; Joonas Govenius; Shumpei Masuda; Mikko Möttönen

Quantum technology promises revolutionizing applications in information processing, communications, sensing and modelling. However, efficient on-demand cooling of the functional quantum degrees of freedom remains challenging in many solid-state implementations, such as superconducting circuits. Here we demonstrate direct cooling of a superconducting resonator mode using voltage-controllable electron tunnelling in a nanoscale refrigerator. This result is revealed by a decreased electron temperature at a resonator-coupled probe resistor, even for an elevated electron temperature at the refrigerator. Our conclusions are verified by control experiments and by a good quantitative agreement between theory and experimental observations at various operation voltages and bath temperatures. In the future, we aim to remove spurious dissipation introduced by our refrigerator and to decrease the operational temperature. Such an ideal quantum-circuit refrigerator has potential applications in the initialization of quantum electric devices. In the superconducting quantum computer, for example, fast and accurate reset of the quantum memory is needed.


Physical Review Letters | 2014

Single-Shot Readout and Relaxation of Singlet and Triplet States in Exchange-Coupled P-31 Electron Spins in Silicon

Juan P. Dehollain; J. T. Muhonen; Kuan Yen Tan; Andre Saraiva; D.N. Jamieson; Andrew S. Dzurak; Andrea Morello

We present the experimental observation of a large exchange coupling J ≈ 300 μeV between two (31)P electron spin qubits in silicon. The singlet and triplet states of the coupled spins are monitored in real time by a single-electron transistor, which detects ionization from tunnel-rate-dependent processes in the coupled spin system, yielding single-shot readout fidelities above 95%. The triplet to singlet relaxation time T(1) ≈ 4 ms at zero magnetic field agrees with the theoretical prediction for J-coupled 31P dimers in silicon. The time evolution of the two-electron state populations gives further insight into the valley-orbit eigenstates of the donor dimer, valley selection rules and relaxation rates, and the role of hyperfine interactions. These results pave the way to the realization of two-qubit quantum logic gates with spins in silicon and highlight the necessity to adopt gating schemes compatible with weak J-coupling strengths.


Nature Physics | 2016

Quantum-limited heat conduction over macroscopic distances

Matti Partanen; Kuan Yen Tan; Joonas Govenius; Russell Lake; Miika Makela; Tuomo Tanttu; Mikko Möttönen

The emerging quantum technological apparatuses1, 2, such as the quantum computer3–6, call for extreme performance in thermal engineering7. Cold distant heat sinks are needed for the quantized electric degrees of freedom due to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance8–10. However, the short distance between the heat-exchanging bodies in the previous experiments11–14 hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics15–17 which provides a basis for the superconducting quantum computer18–21. Especially, our results facilitate remote cooling of nanoelectronic devices using far-away in-situ-tunable heat sinks22, 23. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics24, 25. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications26.


Scientific Reports | 2017

Flux-tunable phase shifter for microwaves

Roope Kokkoniemi; Tuomas Ollikainen; Russell Lake; sakari saarenpää; Kuan Yen Tan; Janne Kokkala; Ceren Dag; Joonas Govenius; Mikko Möttönen

We introduce a magnetic-flux-tunable phase shifter for propagating microwave photons, based on three equidistant superconducting quantum interference devices (SQUIDs) on a transmission line. We experimentally implement the phase shifter and demonstrate that it produces a broad range of phase shifts and full transmission within the experimental uncertainty. Together with previously demonstrated beam splitters, this phase shifter can be utilized to implement arbitrary single-qubit gates for qubits based on propagating microwave photons. These results complement previous demonstrations of on-demand single-photon sources and detectors, and hence assist in the pursuit of an all-microwave quantum computer based on propagating photons.


Physical Review Letters | 2014

Coherent Control of a Single Si-29 Nuclear Spin Qubit

Jarryd Pla; Fahd A. Mohiyaddin; Kuan Yen Tan; Juan P. Dehollain; Rajib Rahman; Gerhard Klimeck; D.N. Jamieson; Andrew S. Dzurak; Andrea Morello

Magnetic fluctuations caused by the nuclear spins of a host crystal are often the leading source of decoherence for many types of solid-state spin qubit. In group-IV semiconductor materials, the spin-bearing nuclei are sufficiently rare that it is possible to identify and control individual host nuclear spins. This Letter presents the first experimental detection and manipulation of a single ²⁹Si nuclear spin. The quantum nondemolition single-shot readout of the spin is demonstrated, and a Hahn echo measurement reveals a coherence time of T₂=6.3(7)  ms—in excellent agreement with bulk experiments. Atomistic modeling combined with extracted experimental parameters provides possible lattice sites for the ²⁹Si atom under investigation. These results demonstrate that single ²⁹Si nuclear spins could serve as a valuable resource in a silicon spin-based quantum computer.


New Journal of Physics | 2015

Electron counting in a silicon single-electron pump

Tuomo Tanttu; Alessandro Rossi; Kuan Yen Tan; Kukka Emilia Huhtinen; Kok Wai Chan; Mikko Möttönen; Andrew S. Dzurak

We report electron counting experiments in a silicon metal-oxide-semiconductor quantum dot architecture which has been previously demonstrated to generate a quantized current in excess of 80 pA with uncertainty below 30 parts per million. Single-shot detection of electrons pumped into a reservoir dot is performed using a capacitively coupled single-electron transistor. We extract the full probability distribution of the transfer of n electrons per pumping cycle for We find that the probabilities extracted from the counting experiment are in agreement with direct current measurements in a broad range of dc electrochemical potentials of the pump. The electron counting technique is also used to confirm the improving robustness of the pumping mechanism with increasing electrostatic confinement of the quantum dot.

Collaboration


Dive into the Kuan Yen Tan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew S. Dzurak

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Morello

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shumpei Masuda

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jarryd Pla

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge