Kuanyi Li
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kuanyi Li.
Hydrobiologia | 2013
Jinlei Yu; Yanmin Li; Xiaoling Liu; Kuanyi Li; Feizhou Chen; Ramesh D. Gulati; Zhengwen Liu
The ecosystem of the highly eutrophic Lake Taihu (China) is seriously affected by recurrent cyanobacterial blooms, but little is known about the contribution made by cyanobacteria to the food web. In this study, we investigated the fate of detritus of the cyanobacterium Microcystis in the food web of Lake Taihu through a 19-day mesocosm experiment using stable-isotopic tracers of carbon (13C) and nitrogen (15N). 13C- and 15N-labeled Microcystis detritus was added to the mesocosm tanks and tracked through different elements of the food web. We found clear enrichment with both 13C and 15N in some zooplankton species, including Daphnia, Diaphanosoma, and Sinocalanus, which suggests that these zooplankters can utilize cyanobacterial detritus as a food source. Benthic animals, chironomid larvae and Limnodrilus, also showed pronounced increases in 13C and 15N, but the isotope increase was relatively smaller in the gastropods, Radix sp. and Bellamya sp., implying that they either exploited this food source differently or responded slower than the zooplankton, which apparently grew faster than the snails. Our study suggests that cyanobacterial detritus, originating almost wholly from the bloom-forming Microcystis, is an important food source for both planktonic and benthic food webs in eutrophic lakes such as Lake Taihu.
Limnology | 2010
Kuanyi Li; Zhengwen Liu; Baohua Guan
Trapa maximowiczii is a floating-leaved macrophyte common in China. The plant population in East Bay, Lake Taihu, has been expanding rapidly in recent years. In order to better understand the mechanisms controlling the population dynamics in this species, two outdoor experiments were conducted from 9 May to 8 July 2007, evaluating the effect on the growth of T. maximowiczii of different nutrient levels in water column and sediment. Results showed that high concentration of nutrients (nitrogen and phosphorous) in water led to significant increases in rosette diameter and plant dry weight, dry weight of aquatic roots and anchoring roots, but had no effect on plant height or main stem node count. Phosphorus enrichment resulted in increases in plant dry weight and seed number. However, no such difference was observed between the nitrogen enrichment treatment and the control. Sediment fertility had significant effects on plant growth. Plant height, plant dry weight, dry weight of aquatic and anchoring roots, and maximum rosette diameter were significantly greater in high-nutrient sediment than those in low-nutrient sediment. This study suggests that eutrophication of water (especially increasing phosphorus loading) and accumulated nutrients in sediment may be among the causes leading to increasing biomass of the floating-leaved macrophyte T. maximowiczii in East Bay of Lake Taihu.
Water Research | 2010
Kuanyi Li; Zhengwen Liu; Binhe Gu
An experiment using nitrogen stable isotope tracer ((15)N) was conducted to track the fate of nitrogen derived from cyanobacterial blooms and the effectiveness with which the seasonal blooms are retained by vegetated and unvegetated sediment in a large shallow eutrophic lake (Lake Taihu, China). (15)N enriched Microcystis was injected into both unvegetated sediment and sediment occupied by common reed (Phragmites australis) in the littoral zone. Nutrient retention by the vegetated sediment was greater than by the unvegetated sediment, resulting in higher delta(15)N in the sediment nitrogen pool. The labeled Microcystis material was also distributed deeper into the vegetated sediment than the unvegetated sediment. A portion of the Microcystis-derived nitrogen was quickly assimilated, appearing first in the belowground biomass and subsequently in the aboveground biomass of the reed plants. The labeled nitrogen was found to support new growth as evidenced by (15)N enrichment of new leaves. This study indicates that common reed beds in the littoral zone may play an important role in retention of sedimented planktonic materials.
Hydrobiologia | 2016
Jinlei Yu; Zhengwen Liu; Hu He; Wei Zhen; Baohua Guan; Feizhou Chen; Kuanyi Li; Ping Zhong; Franco Teixeira-de Mello; Erik Jeppesen
Biomanipulation based on removal of coarse fish, piscivorous fish stocking and sometimes also planting of submerged macrophytes has been used to restore temperate eutrophic shallow lakes. However, in warmer lakes, omnivorous fish are more abundant and apparently less well controlled by the piscivores. We investigated the food web structure and energy pathways of fish in the restored part of subtropical Lake Wuli, China, using gut contents analysis (GCA) and the IsoSource model based on stable isotope analysis (SIA) data. We found that omnivores dominated the fish community in terms of numbers. GCA showed that cyclopoid copepods constituted the main food item for the planktivores, while all adult omnivorous fish fed mainly on macrophytes. The IsoSource SIA model supported these results. Furthermore, piscivores consumed shrimps rather than juvenile omnivores, and the SIA analysis revealed no trophic links between piscivores and adult omnivores or zooplanktivores. We conclude that macrophytes constituted an important food item for omnivores, potentially promoting population growth of omnivores as control by piscivores was weak. This may yield a high predation pressure on both zooplankton and on macrophytes, possibly preventing the establishment of a stable macrophyte state following restoration of eutrophic lakes unless the fish density is regularly controlled.
Fundamental and Applied Limnology | 2008
Kuanyi Li; Zhengwen Liu; Binhe Gu
Due to rapid loss of submerged macrophytes with increasing nutrient loading, a shift from a clear water state to a turbid water state has been observed in some areas of Lake Taihu, a large shallow eutrophic lake in China, while the East Bay of the lake remained clear. In order to explore the persistence mechanisms of the clear water ecosystem, two outdoor experiments were performed to examine the effects of nutrient additions and grazing activity of the snail Bellamya aeruginosa on the growth of the submerged plant Vallisneria spiralis from July to September 2006. Nutrient additions resulted in an increase of periphyton biomass and a reduction of relative growth rates of V. spiralis. B. aeruginosa grazing led to a decrease in periphyton biomass and a 6 to 8-fold increase in plant growth rate relative to the control experiment without snail presence. Our study suggests that the persistence of East Bay clear water state to increased nutrient loadings is related to the abundance of the grazing snails. Careful management of the snail population is important for maintaining the clear water state when nutrient inputs are not sufficiently reduced.
Science of The Total Environment | 2018
Jiao Gu; Hu He; Hui Jin; Jinlei Yu; Erik Jeppesen; Robert W. Nairn; Kuanyi Li
Rapid recruitment of small fish after biomanipulation in warm lakes may delay the reestablishment of submerged macrophytes, not least at high nutrient concentrations. Success has recently been obtained in controlling phosphorus (P) loading to many lakes, but nitrogen (N) inputs often remain high. To determine the interactive effects of N loading and the abundance of small-sized fish on the growth of the submerged macrophyte Vallisneria natans, we conducted an outdoor mesocosm experiment with a factorial design on the north shore of Lake Taihu, China. The experiment involved two densities of small crucian carp - low (10gm-2) and high (40gm-2) - crossed with two levels of N loading - present-day external nutrient loading (P: 5μgL-1day-1, N: 130μgL-1day-1) and P: 5μgL-1day-1 with a three times higher N loading (N: 390μgL-1day-1). The results showed that nitrogen-fish interactions significantly hindered the growth of V. natans, particularly at the high N loading. At low N loading, high densities of fish decreased the relative growth rate, mean leaf length, leaf mass and root mass of V. natans by 16%, 5%, 8%, and 23%, respectively, compared with these measures at low fish densities. The effect of fish was even stronger when N loading was high, with decreases of 232%, 32%, 57%, and 47% for the respective plant growth measures. The stronger effect at high N loading was attributed to higher turbidity due to enhanced phytoplankton biomass and to increased consumption or damage of plants by the fish in response to the more nutrient-enriched plant tissue. Our results indicate that high abundance of small crucian carp in warm lakes may reduce the resilience of submerged macrophytes to external N loading, thereby lowering the chances of successful restoration by biomanipulation.
Environmental Science and Pollution Research | 2017
Hu He; En Hu; Jinlei Yu; Xuguang Luo; Kuanyi Li; Erik Jeppesen; Zhengwen Liu
It is well established that benthivorous fish in shallow lakes can create turbid conditions that influence phytoplankton growth both positively, as a result of elevated nutrient concentration in the water column, and negatively, due to increased attenuation of light. The net effect depends upon the degree of turbidity induced by the benthivores. Stocked Carassius carassius dominate the benthivorous fish fauna in many nutrient-rich Chinese subtropical and tropical shallow lakes, but the role of the species as a potential limiting factor in phytoplankton growth is ambiguous. Clarification of this relationship will help determine the management strategy and cost of restoring eutrophic lakes in China and elsewhere. Our outdoor mesocosm experiment simulating the effect of high density of crucian carp on phytoplankton growth and community structure in eutrophic shallow lakes suggests that stocking with this species causes resuspension of sediment, thereby increasing light attenuation and elevating nutrient concentrations. However, the effect of light attenuation was insufficient to offset the impact of nutrient enhancement on phytoplankton growth, and significant increases in both phytoplankton biomass and chlorophyll a concentrations were recorded. Crucian carp stocking favored the dominance of diatoms and led to lower percentages (but not biomass) of buoyant cyanobacteria. The dominance of diatoms may be attributed to a competitive advantage of algal cells with high sedimentation velocity in an environment subjected to frequent crucian carp-induced resuspension and entrainment of benthic algae caused by the fish foraging activities. Our study demonstrates that turbidity induced by stocked crucian carp does not limit phytoplankton growth in eutrophic waters. Thus, removal of this species (and presumably other similar taxa) from subtropical or tropical shallow lakes, or suspension of aquaculture, is unlikely to boost phytoplankton growth, despite the resulting improvements in light availability.
Water Research | 2018
Hu He; Hui Jin; Erik Jeppesen; Kuanyi Li; Zhengwen Liu; Yongdong Zhang
Although it is well established that climate warming can reinforce eutrophication in shallow lakes by altering top-down and bottom-up processes in the food web and biogeochemical cycling, recent studies in temperate zones have also shown that adverse effects of rising temperature are diminished in fishless systems. Whereas the removal of zooplanktivorous fish may be useful in attempts to mitigate eutrophication in temperate shallow lakes, it is uncertain whether similar mitigation might be achieved in warmer climates. We compared the responses of zooplankton and phytoplankton communities to climate warming in the presence and absence of fish (Aristichthys nobilis) in a 4-month mesocosm experiment at subtropical temperatures. We hypothesized that 1) fish and phytoplankton would benefit from warming, while zooplankton would suffer in fish-present mesocosms and 2) warming would favor zooplankton growth but reduce phytoplankton biomass in fish-absent mesocosms. Our results showed significant interacting effects of warming and fish presence on both phytoplankton and zooplankton. In mesocosms with fish, biomasses of fish and phytoplankton increased in heated treatments, while biomasses of Daphnia and total zooplankton declined. Warming reduced the proportion of large Daphnia in total zooplankton biomass, and reduced the zooplankton to phytoplankton biomass ratio, but increased the ratio of chlorophyll a to total phosphorus, indicating a relaxation of zooplankton grazing pressure on phytoplankton. Meanwhile, warming resulted in a 3-fold increase in TP concentrations in the mesocosms with fish present. The results suggest that climate warming has the potential to boost eutrophication in shallow lakes via both top-down (loss of herbivores) and bottom-up (elevated nutrient) effects. However, in the mesocosms without fish, there was no decline in large Daphnia or in total zooplankton biomass, supporting the conclusion that fish predation is the major driver of low large Daphnia abundance in warm lakes. In the fishless mesocosms, phytoplankton biomass and nutrient levels were not affected by temperature. Our study suggests that removing fish to mitigate warming effects on eutrophication may be potentially beneficial in subtropical lakes, though the rapid recruitment of fish in such lakes may present a challenge to success in the long-term.
Limnology and Oceanography | 2010
Leiyan Zhang; Kuanyi Li; Zhengwen Liu; Jack J. Middelburgd
Ecological Complexity | 2009
Kuanyi Li; Zhengwen Liu; Binhe Gu