Kudige N. Prashanth
University of Mysore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kudige N. Prashanth.
International Scholarly Research Notices | 2013
Kudige N. Prashanth; Kanakapura Basavaiah; Madihalli S. Raghu
Two new simple and sensitive extraction-free spectrophotometric methods have been established for the determination of ofloxacin (OFX). The methods are based on ion-pair complex formation reaction between OFX and acidic sulphonphthalein dyes, bromocresol purple (method A), and bromocresol green (method B) in dichloromethane. The experimental variables such as reaction medium, reaction time, and reagent concentration have been carefully optimized to achieve the highest sensitivity. Both dyes react spontaneously with OFX to give yellow-colored complexes. Beer’s law is obeyed over the concentration ranges of 1.0–16 µg ml−1 OFX with correlation coefficient of 0.999 in both methods. The molar absorptivity values are calculated to be and l mol−1 cm−1, for method A and method B, respectively, with corresponding Sandells sensitivity values of 0.015 and 0.019 µg cm−2. The limits of detection (LOD) and quantification (LOQ) are also reported. A Job’s plot of the absorbance versus the molar ratio of OFX to each of dyes under consideration indicated (1 : 1) ratio and the conditional stability constant () of the complexes have been calculated. The proposed methods were applied successfully to the determination of OFX in tablets with good accuracy and precision and without interference from common additives. The results obtained by the proposed methods were compared favorably with those of the reference method.
International Journal of Analytical Chemistry | 2013
Kudige N. Prashanth; Kanakapura Basavaiah; Madihalli S. Raghu
One titrimetric and two spectrophotometric methods which are simple, sensitive, and economic are described for the determination of sumatriptan succinate (STS) in bulk drug and in tablet dosage form using N-bromosuccinimide (NBS) as a brominating agent. In titrimetry, aqueous solution of STS is treated with a measured excess of NBS in acetic acid medium, and after the bromination of STS is judged to be complete, the unreacted NBS is determined iodometrically (method A). Spectrophotometric methods entail addition of a known excess of NBS in acid medium followed by the determination of residual NBS by its reaction with excess iodide, and the liberated iodine (I3 −) is either measured at 370 nm (method B) or liberated iodine is reacted with starch followed by the measurement of the blue colored starch-iodine complex at 570 nm (method C). Titrimetric method is applicable over range 1.0–10.0 mg STS (method A), and the reaction stoichiometry is found to be 1 : 3 (STS : NBS). The spectrophotometric methods obey Beers law for concentration range 0.6–15.0 μg mL−1 (method B) and 0.2–4.0 μg mL−1 (method C). The calculated apparent molar absorptivity values were found to be 2.10 × 104 and 7.44 × 104 L mol−1 cm−1, for method B and method C, respectively.
Journal of the Association of Arab Universities for Basic and Applied Sciences | 2014
Kudige N. Prashanth; Kanakapura Basavaiah; Cijo M. Xavier
Abstract The aim of the present work is to develop sensitive, simple, accurate, precise and cost effective UV-spectrophotometric methods for the determination of sumatriptan succinate (STS), an anti-migraine drug, in bulk and pharmaceutical dosage form; and also to monitor the degradation behavior of the drug under different ICH prescribed stress conditions. Two methods were developed using different solvents, 0.1 M HCl (method A) and acetonitrile (method B). The calibration graphs are linear over the range of 0.2–6.0 μg ml−1 in both the methods with a correlation coefficient (r) of 0.9999. The apparent molar absorptivity values are 7.59 × 104 and 7.81 × 104 l mol−1 cm−1, for method A and method B, respectively. The other optical characteristics such as Sandell’s sensitivity, limit of detection (LOD) and limit of quantification (LOQ) values are also reported. The accuracy and precision of the methods were evaluated based on intra-day and inter-day variations. The accuracy of the methods was further confirmed by standard addition procedure. The degradation behavior of the drug was studied by subjecting STS to an acid and alkaline hydrolysis, oxidative, thermal and UV degradation. This study indicated that STS was degraded in alkaline medium and in oxidative condition. The proposed methods were successfully applied to the determination of STS in tablets and the results obtained are comparable with the official method.
International Scholarly Research Notices | 2014
Nagaraju Swamy; Kudige N. Prashanth; Kanakapura Basavaiah
Two spectrophotometric methods are described for the determination of isoniazid (INH) in pharmaceuticals. In the first method (FCR method), INH is reacted with Folin-Ciocalteu reagent in Na2CO3 medium and the resulting blue colored chromogen measured at 760 nm. Iron(II), formed as a result of reaction between INH and iron(III), is made to react with ferricyanide, and the resulting Prussian blue is measured at 760 nm, basing the second method (FFC method). The conditions for better performance are optimized. Beer’s law is obeyed in the concentration ranges 0.5–10 and 0.2–3.0 μg mL−1 for FCR method and FFC methods, respectively, with corresponding molar absorptivity values of and L mol−1 cm−1. The methods are validated for accuracy, precision, LOD, LOQ, robustness, and ruggedness as per the current ICH guidelines. The validated methods were successfully applied to quantify INH in its commercial formulation with satisfactory results; hence the methods are suitable for isoniazid determination in bulk drugs and pharmaceuticals.
International Journal of Analytical Chemistry | 2013
Madihalli S. Raghu; Kanakapura Basavaiah; Kudige N. Prashanth; K. B. Vinay
One titrimetric and two spectrophotometric methods are described for the determination of ketotifen fumarate (KTF) in bulk drug and in tablets using cerium(IV) as the oxidimetric agent. In titrimetry (method A), the drug was treated with a measured excess of cerium(IV) in H2SO4 medium and after a standing time of 10 min, the surplus oxidant was determined by back titration with iron(II). The spectrophotometric procedures involve addition of a known excess of cerium(IV) to KTF in acid medium followed by the determination of unreacted oxidant by reacting with either p-dimethyl amino benzaldehyde and measuring the resulting colour at 460 nm (method B) or o-dianisidine and subsequent measurement of the absorbance of coloured product at 470 nm (method C). Titrimetric assay is based on a 1 : 2 reaction stoichiometry between KTF and cerium(IV) and the method is applicable over 2–18 mg range. In spectrophotometry, regression analysis of Beers law plots showed a good correlation in 0.4–8.0 and 0.4–10.0 g mL−1 KTF ranges for method B and method C, respectively, and the corresponding molar absorptivity coefficients are calculated to be 4.0 × 104 and 3.7 × 104 L mol−1 cm−1.
International Scholarly Research Notices | 2013
Kudige N. Prashanth; Kanakapura Basavaiah; Madihalli S. Raghu
An accurate and precise spectrophotometric method is presented for the determination of zolmitriptan (ZMT) based on the formation of a red color product with vanillin in presence of concentrated H2SO4, with the chromogen being measured at 580 nm. The reaction proceeds quantitatively at room temperature in 10 min. The calibration curve is linear over the range 5.0–90.0 μg mL−1 and described by the regression equation with a regression coefficient of 0.9994 . The calculated molar absorptivity and Sandell sensitivity values are 3.3 × 103 L mol−1 cm−1 and 0.0872 μg cm−2, respectively. The limits of detection (LOD) and quantification (LOQ) calculated as per ICH guidelines are 1.26 and 3.81 μg mL−1, respectively. The within-day accuracy expressed as relative error was better than 1.78% with precision (RSD) ranging from 0.83 to 1.45%. The between-day accuracy ranged from 1.21 to 1.84% with a precision less than 1.66%. The method was successfully applied to the analysis of one brand of tablet containing zolmitriptan. The results obtained were in agreement with those obtained by published reference method. The accuracy was also checked by placebo blank and synthetic mixture analyses besides recovery study via standard addition procedure.
Brazilian Journal of Pharmaceutical Sciences | 2015
Nagaraju Swamy; Kudige N. Prashanth; Kanakapura Basavaiah
One titrimetric and two spectrophotometric methods are proposed for the determination of diethylcarbamazine citrate (DEC) in bulk drug and in formulations using potassium iodate and potassium iodide as reagent. The methods employ the well-known analytical reaction between iodate and iodide in the presence of acid. In titrimetry (method A), the drug was treated with a measured excess of thiosulfate in the presence of unmeasured excess of iodate-iodide mixture and after a standing time of 10 min, the surplus thiosulfate was determined by back titration with iodine towards starch end point. Titrimetric assay is based on a 1:3 reaction stoichiometry between DEC and iodine and the method is applicable over 2.0-10.0 mg range. The liberated iodine is measured spectrophotometrically at 370 nm (method B) or the iodine-starch complex measured at 570 nm (method C). In both methods, the absorbance is found to be linearly dependent on the concentration of iodine, which in turn is related to DEC concentration. The calibration curves are linear over 2.5-50 and 2.5-30 µg mL-1 DEC for method B and method C, respectively. The calculated molar absorptivity and Sandell sensitivity values were 6.48×103 L mol-1 cm-1 and 0.0604 µg cm-2, respectively, for method B, and their respective values for method C are 9.96×103 L mol-1 cm-1 and 0.0393 µg cm-2. The intra-day and inter-day accuracy and precision studies were carried out according to the ICH guidelines. The methods were successfully applied to the analysis of DEC formulations.
International Scholarly Research Notices | 2012
P. J. Ramesh; Kanakapura Basavaiah; Cijo M. Xavier; Kudige N. Prashanth; Madihalli S. Raghu; K. B. Vinay
Titrimetric and spectrophotometric assay of ganciclovir (GNC) is described using cerium(IV) sulphate as the oxidimetric reagent. The methods are based on the oxidation of GNC with a measured excess of cerium(IV) sulphate in acid medium followed by determination of the unreacted oxidant by two different reaction schemes. In titrimetry, the unreacted oxidant was determined by back titration with ferrous ammonium sulphate (FAS) in sulphuric acid medium, and spectrophotometry involves the reaction of residual cerium(IV) with p-DMAB to form brownish-coloured p-dimethylamino quinoneimine whose absorbance was measured at 460 nm. In both methods, the amount of cerium(IV) sulphate reacted corresponds to GNC concentration. Titrimetry is applicable over 3–10 mg range where as, in spcetrophotometry, the calibration graph is linear over the range of 2–10 μg mL−1 and the calculated molar absorptivity value is 1.960×104 L mol−1 cm−1. The validity of the proposed methods was tested by analyzing pure and dosage forms containing GNC. Statistical treatment of the results reflects that the proposed procedures are precise, accurate, and easily applicable for the determination of GNC pure form and in pharmaceutical formulations.
International Scholarly Research Notices | 2012
Kudige N. Prashanth; Basavaiah Kanakapura; Madihalli S. Raghu; K. B. Vinay
Studies were carried out to use the charge-transfer reactions of sumatriptan (SMT), extracted from neutralized sumatriptan succinate (STS), as n-electron donor with the π-acceptor, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and σ-acceptor, and iodine (I2). The formation of the colored complexes was utilized for the development of simple, rapid, and accurate spectrophotometric methods for the determination of SMT in pure form as well as in its tablets. The quantification of colored products was made spectrophotometrically at 585 nm for the CT complex formed between SMT and DDQ (DDQ method) and at 375 nm for the CT complex formed between SMT and I2 (I2 method). Beer’s law is obeyed over the concentration ranges of 4.0–56.0 μg mL−1 and 2.0–28.0 for DDQ and I2, respectively, with correlation coefficients () of 0.9997 and 0.9998. The analytical parameters such as apparent molar absorptivity, Sandell’s sensitivities, and limits of detection (LOD) and quantification (LOQ) are also reported for both methods. The described methods were successfully applied to the determination of SMT in tablets. No interference was observed from the common excipients present in tablets. The reaction stoichiometry in both methods was evaluated by Job’s method of continuous variations and was found to be 1 : 1 (donor : acceptor).
Moscow University Chemistry Bulletin | 2013
Madihalli S. Raghu; Kanakapura Basavaiah; Kudige N. Prashanth; K. B. Vinay
Four simple, selective and sensitive methods are described for the determination of levocetirizine dihydrochloride (LCT) in bulk drug and in tablets. The methods exploit the well-known analytical reaction between iodide and iodate in the presence of acid solution. Iodide present is oxidized by iodate in an amount equivalent to the HCl present in LCT to iodine and the liberated iodine is determined by four different procedures which inturn quantify LCT at varying detection range and sensitiveness. Two direct titrimetric procedures involve titration of iodine by thiosulphate either towards starch end point (method A) or potentiometrically (method B). Both the methods have a reaction stiochiometry of 1: 1 (LCT: liberated iodine) and have quantification ranges of 2–20 mg LCT for method A and method B. The liberated iodine is also measured spectrophotometrically at 350 nm (method C) or the iodine-starch complex measured at 570 nm (method D). In both the methods, the absorbance is found to be linearly dependent on the concentration of iodine which in turn is related to LCT concentration. The calibration curves are linear over 5–40 and 1.25–12.5 mg mL−1 LCT for method C and method D, respectively. The calculated molar absorptivity and Sandel sensitivity values are 1.0 × 104 L mol−1 cm−1 and 0.0435 mg cm−2, respectively for method C, and their respective values for method D are 2.9 × 104 L mol−1 cm−1 and 0.0156 mg cm−2. The intra-day and inter-day accuracy and precision studies were carried according to the ICH guidelines. The method was successfully applied to the analysis of two brands of tablets LCT. The accuracy was also checked by placebo blank and synthetic mixture analyses besides recovery study via standard addition procedure.