Kuei-Hung Lai
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kuei-Hung Lai.
Scientific Reports | 2016
Kuei-Hung Lai; Yi-Chang Liu; Jui-Hsin Su; Mohamed El-Shazly; Chih-Fung Wu; Ying-Chi Du; Yu-Ming Hsu; Juan-Cheng Yang; Ming-Kai Weng; Chia-Hua Chou; Guan-Yu Chen; Yu-Cheng Chen; Mei-Chin Lu
Two new scalarane sesterterpenoids, 12β-(3′β-hydroxybutanoyloxy)-20,24-dimethyl-24-oxo-scalara-16-en-25-al (1) and 12β-(3′β-hydroxypentanoyloxy)-20,24-dimethyl-24-oxo-scalara-16-en-25-al (2), along with one known tetraprenyltoluquinol-related metabolite (3), were isolated from the sponge Carteriospongia sp. In leukemia Molt 4 cells, 1 at 0.0625 μg/mL (125 nM) triggered mitochondrial membrane potential (MMP) disruption and apoptosis showing more potent effect than 2 and 3. The isolates inhibited topoisomerase IIα expression. The apoptotic-inducing effect of 3 was supported by the in vivo experiment through suppressing the volume of xenograft tumor growth (47.58%) compared with the control. Compound 1 apoptotic mechanism of action in Molt 4 cells was further elucidated through inducing ROS generation, calcium release and ER stress. Using the molecular docking analysis, 1 exhibited more binding affinity to N-terminal ATP-binding pocket of Hsp90 protein than 17-AAG, a standard Hsp90 inhibitor. The expression of Hsp90 client proteins, Akt, p70S6k, NFκB, Raf-1, p-GSK3β, and XIAP, MDM 2 and Rb2, and CDK4 and Cyclin D3, HIF 1 and HSF1 were suppressed by the use of 1. However, the expression of Hsp70, acetylated tubulin, and activated caspase 3 were induced after 1 treatment. Our results suggested that the proapoptotic effect of the isolates is mediated through the inhibition of Hsp90 and topoisomerase activities.
Marine Drugs | 2017
Kuei-Hung Lai; Wan-Jing You; Chi-Chen Lin; Mohamed El-Shazly; Zuo-Jian Liao; Jui-Hsin Su
Cembrane-type diterpenoids are among the most frequently encountered natural products from the soft corals of the genus Lobophytum. In the course of our investigation to identify anti-inflammatory constituents from a wild-type soft coral Lobophytum crassum, two new cembranoids, lobophyolide A (1) and B (2), along with five known compounds (3–7), were isolated. The structures of these natural products were identified using NMR and MS spectroscopic analyses. Compound 1 was found to possess the first identified α-epoxylactone group among all cembrane-type diterpenoids. The in vitro anti-inflammatory effect of compounds 1–5 was evaluated. The results showed that compounds 1–5 not only reduced IL-12 release, but also attenuated NO production in LPS-activated dendritic cells. Our data indicated that the isolated series of cembrane-type diterpenoids demonstrated interesting structural features and anti-inflammatory activity which could be further developed into therapeutic entities.
Marine Drugs | 2018
Bo-Rong Peng; Mei-Chin Lu; Mohamed El-Shazly; Shwu-Li Wu; Kuei-Hung Lai; Jui-Hsin Su
Our continuous search for marine bioactive secondary metabolites led to the screening of crude extracts from a variety of aquaculture soft corals. The ethyl acetate (EtOAc) extract of Lobophytum crassum showed a distinctive chemical profile that was different from the wild type. It demonstrated significant anti-proliferative activity against Molt 4 leukemia cell with an IC50 value of 1 μg/mL after 24 h. Chemical investigation focusing on the unique peaks in L. crassum profile led to the discovery of a new α-tocopherol crassumtocopherol C (1), and two new cembrane-based diterpenoids culobophylins D (2) and E (3), along with ten known cembranoids (4–13). The structures of these isolates were elucidated using extensive spectroscopic techniques and a comparison with previously published data of related metabolites. Compound 2 was found to possess the first identified saturated internal C4-O-C14 linkage six-membered ring among all cembrane-type diterpenoids. The anti-proliferative activity of all the isolates (except 3) was evaluated against a limited panel of leukemia cell lines (Molt 4, K562, U937, and Sup-T1). The major compounds 8 and 10 exhibited the most anti-proliferative potent effect, with IC50 values ranging from 1.2 to 7.1 μM. The Structure Activity Relationship (SAR) of the isolates suggested that the presence of lactone moieties is crucial for the anti-proliferative activity against leukemia cells. Our work indicated that the development of an efficient aquaculture protocols for soft corals led to the discovery of new secondary metabolites with unique structural features. Such protocols can lead to a sustainable supply of biologically active compounds in enough quantities for the pharmaceutical industry.
Marine Drugs | 2018
Jing-Hao Xu; Kuei-Hung Lai; Yin-Di Su; Yu-Chia Chang; Bo-Rong Peng; Anders Backlund; Zhi-Hong Wen; Ping-Jyun Sung
Four new briarane diterpenoids, briaviolides K–N (1–4), have been obtained from the cultured-type octocoral Briareum violaceum. Using a spectroscopic approach, the structures of briaranes 1–4 were identified. This study employed an in vitro model of lipopolysaccharide (LPS)-induced inflammation in the murine macrophage RAW 264.7 cell line, and found that among the four briaranes, briarane 2 possessed anti-inflammatory activity against inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions in cells. In addition, principal component analysis using the chemical global positioning system (ChemGPS) for natural products (ChemGPS-NP) was employed in order to analyze the structure-activity relationship (SAR), and the results indicated that the ring conformation of the compound has a leading role in suppressing the expressions of pro-inflammatory iNOS and COX-2 proteins in macrophages.
Marine Drugs | 2018
Yu-Cheng Chen; Mei-Chin Lu; Mohamed El-Shazly; Kuei-Hung Lai; Tung-Ying Wu; Yu-Ming Hsu; Yi-Lun Lee; Yi-Chang Liu
Heteronemin, the most abundant secondary metabolite in the sponge Hippospongia sp., exhibited potent cytotoxic activity against several cancer cell lines. It increased the percentage of apoptotic cells and reactive oxygen species (ROS) in Molt4 cells. The use of ROS scavenger, N-acetyl cysteine (NAC), suppressed both the production of ROS from mitochondria and cell apoptosis that were induced by heteronemin treatment. Heteronemin upregulated talin and phosphorylated talin expression in Molt4 cells but it only upregulated the expression of phosphorylated talin in HEK293 cells. However, pretreatment with NAC reversed these effects. Talin siRNA reversed the activation of pro-apoptotic cleaved caspases 3 and 9. On the other hand, the downstream proteins including FAK and NF-κB (p65) were not affected. In addition, we confirmed that heteronemin directly modulated phosphorylated talin expression through ROS generation resulting in cell apoptosis, but it did not affect talin/FAK complex. Furthermore, heteronemin interfered with actin microfilament and caused morphology changes. Taken together, these findings suggest that the cytotoxic effect of heteronemin is associated with oxidative stress and induction of phosphorylated talin expression. Our results suggest that heteronemin represents an interesting candidate which can be further developed as a drug lead against leukemia.
Marine Drugs | 2018
Man-Gang Lee; Yi-Chang Liu; Yi-Lun Lee; Mohamed El-Shazly; Kuei-Hung Lai; Shou-Ping Shih; Seng-Chung Ke; Ming-Chang Hong; Ying-Chi Du; Juan-Cheng Yang; Ping-Jyun Sung; Zhi-Hong Wen; Mei-Chin Lu
Heteronemin, a marine sesterterpenoid-type natural product, possesses diverse bioactivities, especially antitumor effect. Accumulating evidence shows that heteronemin may act as a potent anticancer agent in clinical therapy. To fully understand the antitumor mechanism of heteronemin, we further explored the precise molecular targets in prostate cancer cells. Initially, heteronemin exhibited potent cytotoxic effect against LNcap and PC3 prostate cancer cells with IC50 1.4 and 2.7 μM after 24 h, respectively. In the xenograft animal model, the tumor size was significantly suppressed to about 51.9% in the heteronemin-treated group in comparison with the control group with no significant difference in the mice body weights. In addition, the results of a cell-free system assay indicated that heteronemin could act as topoisomerase II (topo II) catalytic inhibitor through the elimination of essential enzymatic activity of topoisomerase IIα expression. We found that the use of heteronemin-triggered apoptosis by 20.1–68.3%, caused disruption of mitochondrial membrane potential (MMP) by 66.9–99.1% and promoted calcium release by 1.8-, 2.0-, and 2.1-fold compared with the control group in a dose-dependent manner, as demonstrated by annexin-V/PI, rhodamine 123 and Fluo-3 staining assays, respectively. Moreover, our findings indicated that the pretreatment of LNcap cells with an inhibitor of protein tyrosine phosphatase (PTPi) diminished growth inhibition, oxidative and Endoplasmic Reticulum (ER) stress, as well as activation of Chop/Hsp70 induced by heteronemin, suggesting PTP activation plays a crucial rule in the cytotoxic activity of heteronemin. Using molecular docking analysis, heteronemin exhibited more binding affinity to the N-terminal ATP-binding pocket of Hsp90 protein than 17-AAG, a standard Hsp90 inhibitor. Finally, heteronemin promoted autophagy and apoptosis through the inhibition of Hsp 90 and topo II as well as PTP activation in prostate cancer cells. Taken together, these multiple targets present heteronemin as an interesting candidate for its future development as an antiprostatic agent.
Marine Drugs | 2018
Chih-Fung Wu; Man-Gang Lee; Mohamed El-Shazly; Kuei-Hung Lai; Seng-Chung Ke; Chiang-Wen Su; Shou-Ping Shih; Ping-Jyun Sung; Ming-Chang Hong; Zhi-Hong Wen; Mei-Chin Lu
Aaptos is a genus of marine sponge which belongs to Suberitidae and is distributed in tropical and subtropical oceans. Bioactivity-guided fractionation of Aaptos sp. methanolic extract resulted in the isolation of aaptamine, demethyloxyaaptamine, and isoaaptamine. The cytotoxic activity of the isolated compounds was evaluated revealing that isoaaptamine exhibited potent cytotoxic activity against breast cancer T-47D cells. In a concentration-dependent manner, isoaaptamine inhibited the growth of T-47D cells as indicated by short-(MTT) and long-term (colony formation) anti-proliferative assays. The cytotoxic effect of isoaaptamine was mediated through apoptosis as indicated by DNA ladder formation, caspase-7 activation, XIAP inhibition and PARP cleavage. Transmission electron microscopy and flow cytometric analysis using acridine orange dye indicated that isoaaptamine treatment could induce T-47D cells autophagy. Immunoblot assays demonstrated that isoaaptamine treatment significantly activated autophagy marker proteins such as type II LC-3. In addition, isoaaptamine treatment enhanced the activation of DNA damage (γH2AX) and ER stress-related proteins (IRE1 α and BiP). Moreover, the use of isoaaptamine resulted in a significant increase in the generation of reactive oxygen species (ROS) as well as in the disruption of mitochondrial membrane potential (MMP). The pretreatment of T-47D cells with an ROS scavenger, N-acetyl-l-cysteine (NAC), attenuated the apoptosis and MMP disruption induced by isoaaptamine up to 90%, and these effects were mediated by the disruption of nuclear factor erythroid 2-related factor 2 (Nrf 2)/p62 pathway. Taken together, these findings suggested that the cytotoxic effect of isoaaptamine is associated with the induction of apoptosis and autophagy through oxidative stress. Our data indicated that isoaaptamine represents an interesting drug lead in the war against breast cancer.
Journal of Natural Products | 2016
Yu-Ming Hsu; Fang Rong Chang; I-Wen Lo; Kuei-Hung Lai; Mohamed El-Shazly; Tung-Ying Wu; Ying-Chi Du; Tsong-Long Hwang; Yuan Bin Cheng; Yang Chang Wu
Planta Medica | 2012
Kuei-Hung Lai; Ying-Chi Du; Mei Chin Lu; Tung Ying Wu; Yu-Ming Hsu; Yc Lin; Mohamed El-Shazly; Ts Chu; Cf Chen; Fang Rong Chang; Yang Chang Wu
Archive | 2017
Kuei-Hung Lai; Anders Backlund