Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kullervo Hynynen is active.

Publication


Featured researches published by Kullervo Hynynen.


Ultrasound in Medicine and Biology | 2012

Study of Factors Affecting the Magnitude and Nature of Ultrasound Exposure with In Vitro Set-Ups

Jarkko J. Leskinen; Kullervo Hynynen

Therapeutic ultrasound is a clinically applied method to improve fracture healing and holds great potential as a manipulator of biologic material relevant to tissue engineering approaches. Unfortunately, the cell stimulating property of ultrasound is not known, which inhibits the optimal use of this technique. Additionally, many in vitro studies in this field use ultrasound configurations that are vulnerable to errors during calibration and use. These errors arise from the structural simplicity and incomplete characterization of these configurations. In this study, pulse-echo ultrasound, laser Doppler vibrometry and Schlieren imaging were applied to noninvasively characterize common in vitro experimental configurations. Fine wire thermocouple measurements were conducted to characterize any possible temperature rise during the ultrasound exposures. The results quantified the frequency dependent sound transmission through culture wells and the standing wave effect within the cell volume. These effects can cause uncertainty of up to 700% in the actual ultrasound exposure experienced by the cell. A temperature rise of 2.7°C was measured from an ultrasound configuration commonly used in vitro ultrasound studies. Furthermore, wave mode conversion in culture wells was observed, emphasizing the complexity of these sonications. Similar type Lamb waves have been observed in bone in vivo. Thus, Lamb waves may be a mechanism for stimulating the cells.


IEEE Transactions on Biomedical Engineering | 2012

Investigation of Standing-Wave Formation in a Human Skull for a Clinical Prototype of a Large-Aperture, Transcranial MR-Guided Focused Ultrasound (MRgFUS) Phased Array: An Experimental and Simulation Study

Junho Song; Aki Pulkkinen; Yuexi Huang; Kullervo Hynynen

Standing-wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30-cm diameter with 15-cm radius of curvature, low-frequency (230 kHz), hemispherical transcranial magnetic resonance-guided focused ultrasound phased array. Experimental and simulation studies were conducted with changing aperture size and f -number configurations of the phased array and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and antinodes of standing wave produced by the small-aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing-wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number.


Physics in Medicine and Biology | 2011

Simulations and measurements of transcranial low-frequency ultrasound therapy: skull-base heating and effective area of treatment

Aki Pulkkinen; Yuexi Huang; Junho Song; Kullervo Hynynen

Measurements of temperature elevations induced by sonications in a single intact cadaver skull filled with soft-tissue mimicking phantom material were performed using magnetic resonance thermometry. The sonications were done using a clinical transcranial ultrasound therapy device operating at 230 kHz and the measurements were compared with simulations done using a model incorporating both the longitudinal and shear wave propagation. Both the measurements and simulations showed that in some situations the temperature increase could be higher in the phantom material adjacent to the skull-base than at the focus, which could lead to undesired soft-tissue damage in treatment situations. On average the measurements of the sonicated locations, as well as the comparative simulations, showed 32 ± 64% and 49 ± 32% higher temperature elevations adjacent to the skull-base than at the focus, respectively. The simulation model was used to extend the measurements by simulating multiple sonications of brain tissue in five different skulls with and without correcting the aberrations caused by the skull on the ultrasound. Without aberration correction the closest sonications to the skulls that were treatable in any brain location without undesired tissue damage were at a distance of 19.1 ± 2.6 mm. None of the sonications beyond a distance of 41.2 ± 5.3 mm were found to cause undesired tissue damage. When using the aberration correction closest treatable, safe distances for sonications were found to be 16.0 ± 1.6  and 38.8 ± 3.8 mm, respectively. New active cooling of the skull-base through the nasal cavities was introduced and the treatment area was investigated. The closest treatable distance without aberration correction reduced to 17.4 ± 1.9 mm with the new cooling method. All sonications beyond a distance of 39.7 ± 6.6 mm were found treatable. With the aberration correction no difference in the closest treatable or the safety distance was found in comparison to sonications without nasal cavity cooling. To counteract undesired skull-base heating a new anti-focus within solid media was developed along with a new regularized phasing method. Mathematical bases for both the methods and simulations utilizing them were presented. It was found that utilizing the anti-focus in solid media and regularized phasing, the fraction of temperature increase of the brain tissue at the focus and the peak temperature increase adjacent to the skull-base can be increased from 1.00 to 1.95. This improves the efficiency of the sonication by reducing the energy transfer to the skull-base.


Bone | 2010

Ultrasound-induced activation of Wnt signaling in human MG-63 osteoblastic cells.

Anu Olkku; Jarkko J. Leskinen; Mikko J. Lammi; Kullervo Hynynen; Anitta Mahonen

The benefit from an ultrasound (US) exposure for fracture healing has been clearly shown. However, the molecular mechanisms behind this effect are not fully known. Recently, the canonical Wnt signaling pathway has been recognized as one of the essential regulators of osteoblastogenesis and bone mass, and thereby considered crucial for bone health. Mechanical loading and fluid shear stress have been reported to activate the canonical Wnt signaling pathway in bone cells, but previous reports on the effects of therapeutic US on Wnt signaling in general or in bone, in particular, have not been published yet. Therefore, activation of Wnt signaling pathway was assayed in human osteoblastic cells, and indeed, this pathway was found to be activated in MG-63 cells through the phosphoinositol 3-kinase/Akt (PI3K/Akt) and mTOR cascades following a single 10 min US exposure (2 W, 1.035 MHz). In addition to the reporter assay results, the Wnt pathway activation was also observed as nuclear localization of beta-catenin. Wnt activation showed also temperature dependence at elevated temperatures, and the expression of canonical Wnt ligands was induced under the thermal exposures. However, existence of a specific, non-thermal US component was evident as well, perhaps evidence of a potential dual action of therapeutic US on bone. Neither US nor heat exposures affected cell viability in our experiments. In summary, this is the first study to report that Wnt signaling cascade, important for osteoblast function and bone health, is one of the pathways activated by therapeutic US as well as by hyperthermia in human osteoblastic cells. Our results provide evidence for the potential molecular mechanisms behind the beneficial effects of US on fracture healing. Combinations of US, heat, and possible pharmacological treatment could provide useful flexibility for clinical cases in treating various bone disorders.


Physics in Medicine and Biology | 2014

Numerical simulations of clinical focused ultrasound functional neurosurgery

Aki Pulkkinen; Beat Werner; Ernst Martin; Kullervo Hynynen

A computational model utilizing grid and finite difference methods were developed to simulate focused ultrasound functional neurosurgery interventions. The model couples the propagation of ultrasound in fluids (soft tissues) and solids (skull) with acoustic and visco-elastic wave equations. The computational model was applied to simulate clinical focused ultrasound functional neurosurgery treatments performed in patients suffering from therapy resistant chronic neuropathic pain. Datasets of five patients were used to derive the treatment geometry. Eight sonications performed in the treatments were then simulated with the developed model. Computations were performed by driving the simulated phased array ultrasound transducer with the acoustic parameters used in the treatments. Resulting focal temperatures and size of the thermal foci were compared quantitatively, in addition to qualitative inspection of the simulated pressure and temperature fields. This study found that the computational model and the simulation parameters predicted an average of 24 ± 13% lower focal temperature elevations than observed in the treatments. The size of the simulated thermal focus was found to be 40 ± 13% smaller in the anterior-posterior direction and 22 ± 14% smaller in the inferior-superior direction than in the treatments. The location of the simulated thermal focus was off from the prescribed target by 0.3 ± 0.1 mm, while the peak focal temperature elevation observed in the measurements was off by 1.6 ± 0.6 mm. Although the results of the simulations suggest that there could be some inaccuracies in either the tissue parameters used, or in the simulation methods, the simulations were able to predict the focal spot locations and temperature elevations adequately for initial treatment planning performed to assess, for example, the feasibility of sonication. The accuracy of the simulations could be improved if more precise ultrasound tissue properties (especially of the skull bone) could be obtained.


IEEE Transactions on Biomedical Engineering | 2010

Local Harmonic Motion Monitoring of Focused Ultrasound Surgery—A Simulation Model

Janne Heikkilä; Laura Curiel; Kullervo Hynynen

In this paper, a computational model for localized harmonic motion (LHM) imaging-based monitoring of high-intensity focused ultrasound surgery (FUS) is presented. The LHM technique is based on a focused, time-varying ultrasound radiation force excitation, which induces local oscillatory motions at the focal region. These vibrations are tracked, using pulse-echo imaging, and then, used to estimate the mechanical properties of the sonication region. LHM is feasible for FUS monitoring because changes in the material properties during the coagulation process affect the measured displacements. The presented model includes separate models to simulate acoustic sonication fields, sonication-induced temperature elevation and mechanical motion, and pulse-echo imaging of the induced motions. These 3-D simulation models are based on Rayleigh-Sommerfield integral, finite element, and spatial impulse response methods. Simulated-tissue temperature elevation and mechanical motion were compared with previously published in vivo measurements. Finally, the simulation model was used to simulate coagulation and LHM monitoring, as would occur with multiple, neighbouring sonication locations covering a large tumor.


Computerized Medical Imaging and Graphics | 2010

Computational aspects in high intensity ultrasonic surgery planning.

Aki Pulkkinen; Kullervo Hynynen

Therapeutic ultrasound treatment planning is discussed and computational aspects regarding it are reviewed. Nonlinear ultrasound simulations were solved with a combined frequency domain Rayleigh and KZK model. Ultrasonic simulations were combined with thermal simulations and were used to compute heating of muscle tissue in vivo for four different focused ultrasound transducers. The simulations were compared with measurements and good agreement was found for large F-number transducers. However, at F# 1.9 the simulated rate of temperature rise was approximately a factor of 2 higher than the measured ones. The power levels used with the F# 1 transducer were too low to show any nonlinearity. The simulations were used to investigate the importance of nonlinarities generated in the coupling water, and also the importance of including skin in the simulations. Ignoring either of these in the model would lead to larger errors. Most notably, the nonlinearities generated in the water can enhance the focal temperature by more than 100%. The simulations also demonstrated that pulsed high power sonications may provide an opportunity to significantly (up to a factor of 3) reduce the treatment time. In conclusion, nonlinear propagation can play an important role in shaping the energy distribution during a focused ultrasound treatment and it should not be ignored in planning. However, the current simulation methods are accurate only with relatively large F-numbers and better models need to be developed for sharply focused transducers.


IEEE Transactions on Biomedical Engineering | 2014

Nonuniform Temperature Rise in In Vitro Osteoblast Ultrasound Exposures With Associated Bioeffect

Jarkko J. Leskinen; Anu Olkku; Anitta Mahonen; Kullervo Hynynen

There is a growing interest to use ultrasound to stimulate cellular material in vitro conditions for the treatment of musculoskeletal disorders. However, the beneficial effect resulting from ultrasound exposure is not accurately specified. Many in vitro ultrasound setups are very vulnerable to temperature elevation due to sound absorption, sound reflections, and inadequate heat transfer. The objective of this study is to show that temperature variations capable of modifying biological results may exist in common in vitro exposure system. Human osteoblastic MG-63 cells plated on a 24-well cell plate were treated with pulsed ultrasound in 37 °C water bath (10 min, frequency = 1.035 MHz, burst length = 200 μs, pulse repetition frequency = 1 kHz, duty cycle = 0.2, temporal-average acoustic power = 2 W, and peak pressure = 670-730 kPa) and the activation of heat-dependent canonical Wnt cell signaling was measured. The ultrasound-induced temperature rise was measured with thermocouples and infrared imaging. Chamber-to-chamber comparison showed substantial temperature variation (41.6 °C versus 49.1 °C) among the different chambers. The chamber walls were the most susceptible to heating. The variations in the chamber temperatures correlated to variations in the cell signaling levels (1.3-fold versus 11.5-fold increase). These observations underline the need for system-specific temperature measurements during in vitro exposures.


Physics in Medicine and Biology | 2016

A numerical study on the oblique focus in MR-guided transcranial focused ultrasound.

Alec Hughes; Yuexi Huang; Aki Pulkkinen; Michael L. Schwartz; Andres M. Lozano; Kullervo Hynynen

Recent clinical data showing thermal lesions from treatments of essential tremor using MR-guided transcranial focused ultrasound shows that in many cases the focus is oblique to the main axis of the phased array. The potential for this obliquity to extend the focus into lateral regions of the brain has led to speculation as to the cause of the oblique focus, and whether it is possible to realign the focus. Numerical simulations were performed on clinical export data to analyze the causes of the oblique focus and determine methods for its correction. It was found that the focal obliquity could be replicated with the numerical simulations to within [Formula: see text] of the clinical cases. It was then found that a major cause of the focal obliquity was the presence of sidelobes, caused by an unequal deposition of power from the different transducer elements in the array at the focus. In addition, it was found that a 65% reduction in focal obliquity was possible using phase and amplitude corrections. Potential drawbacks include the higher levels of skull heating required when modifying the distribution of power among the transducer elements, and the difficulty at present in obtaining ideal phase corrections from CT information alone. These techniques for the reduction of focal obliquity can be applied to other applications of transcranial focused ultrasound involving lower total energy deposition, such as blood-brain barrier opening, where the issue of skull heating is minimal.


Bone | 2010

Ultrasound-induced activation of Wnt signaling

Mikko J. Lammi; Anu Olkku; Jarkko J. Leskinen; Kullervo Hynynen; Anitta Mahonen

Collaboration


Dive into the Kullervo Hynynen's collaboration.

Top Co-Authors

Avatar

Aki Pulkkinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Jarkko J. Leskinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Yuexi Huang

Sunnybrook Research Institute

View shared research outputs
Top Co-Authors

Avatar

Anitta Mahonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Anu Olkku

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Junho Song

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beat Werner

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ernst Martin

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Janne Heikkilä

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge