Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuexi Huang is active.

Publication


Featured researches published by Yuexi Huang.


Lancet Neurology | 2013

MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study

Nir Lipsman; Michael L. Schwartz; Yuexi Huang; Liesly Lee; Tejas Sankar; Martin Chapman; Kullervo Hynynen; Andres M. Lozano

BACKGROUND Essential tremor is the most common movement disorder and is often refractory to medical treatment. Surgical therapies, using lesioning and deep brain stimulation in the thalamus, have been used to treat essential tremor that is disabling and resistant to medication. Although often effective, these treatments have risks associated with an open neurosurgical procedure. MR-guided focused ultrasound has been developed as a non-invasive means of generating precisely placed focal lesions. We examined its application to the management of essential tremor. METHODS Our study was done in Toronto, Canada, between May, 2012, and January, 2013. Four patients with chronic and medication-resistant essential tremor were treated with MR-guided focused ultrasound to ablate tremor-mediating areas of the thalamus. Patients underwent tremor evaluation and neuroimaging at baseline and 1 month and 3 months after surgery. Outcome measures included tremor severity in the treated arm, as measured by the clinical rating scale for tremor, and treatment-related adverse events. FINDINGS Patients showed immediate and sustained improvements in tremor in the dominant hand. Mean reduction in tremor score of the treated hand was 89·4% at 1 month and 81·3% at 3 months. This reduction was accompanied by functional benefits and improvements in writing and motor tasks. One patient had postoperative paraesthesias which persisted at 3 months. Another patient developed a deep vein thrombosis, potentially related to the length of the procedure. INTERPRETATION MR-guided focused ultrasound might be a safe and effective approach to generation of focal intracranial lesions for the management of disabling, medication-resistant essential tremor. If larger trials validate the safety and ascertain the efficacy and durability of this new approach, it might change the way that patients with essential tremor and potentially other disorders are treated. FUNDING Focused Ultrasound Foundation.


PLOS ONE | 2010

Antibodies Targeted to the Brain with Image-Guided Focused Ultrasound Reduces Amyloid-β Plaque Load in the TgCRND8 Mouse Model of Alzheimer's Disease

Jessica F. Jordão; Carlos A. Ayala‐Grosso; Kelly Markham; Yuexi Huang; Rajiv Chopra; JoAnne McLaurin; Kullervo Hynynen; Isabelle Aubert

Immunotherapy for Alzheimers disease (AD) relies on antibodies directed against toxic amyloid-beta peptide (Aβ), which circulate in the bloodstream and remove Aβ from the brain [1], [2]. In mouse models of AD, the administration of anti-Aβ antibodies directly into the brain, in comparison to the bloodstream, was shown to be more efficient at reducing Aβ plaque pathology [3], [4]. Therefore, delivering anti-Aβ antibodies to the brain of AD patients may also improve treatment efficiency. Transcranial focused ultrasound (FUS) is known to transiently-enhance the permeability of the blood-brain barrier (BBB) [5], allowing intravenously administered therapeutics to enter the brain [6]–[8]. Our goal was to establish that anti-Aβ antibodies delivered to the brain using magnetic resonance imaging-guided FUS (MRIgFUS) [9] can reduce plaque pathology. To test this, TgCRND8 mice [10] received intravenous injections of MRI and FUS contrast agents, as well as anti-Aβ antibody, BAM-10. MRIgFUS was then applied transcranially. Within minutes, the MRI contrast agent entered the brain, and BAM-10 was later found bound to Aβ plaques in targeted cortical areas. Four days post-treatment, Aβ pathology was significantly reduced in TgCRND8 mice. In conclusion, this is the first report to demonstrate that MRIgFUS delivery of anti-Aβ antibodies provides the combined advantages of using a low dose of antibody and rapidly reducing plaque pathology.


Experimental Neurology | 2013

Amyloid-β plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound.

Jessica F. Jordão; Emmanuel Thévenot; Kelly Markham-Coultes; Tiffany Scarcelli; Ying-Qi Weng; Kristiana Xhima; Meaghan A. O'Reilly; Yuexi Huang; JoAnne McLaurin; Kullervo Hynynen; Isabelle Aubert

Noninvasive, targeted drug delivery to the brain can be achieved using transcranial focused ultrasound (FUS), which transiently increases the permeability of the blood-brain barrier (BBB) for localized delivery of therapeutics from the blood to the brain. Previously, we have demonstrated that FUS can deliver intravenously-administered antibodies to the brain of a mouse model of Alzheimers disease (AD) and rapidly reduce plaques composed of amyloid-β peptides (Aβ). Here, we investigated two potential effects of transcranial FUS itself that could contribute to a reduction of plaque pathology, namely the delivery of endogenous antibodies to the brain and the activation of glial cells. We demonstrate that transcranial FUS application leads to a significant reduction in plaque burden four days after a single treatment in the TgCRND8 mouse model of AD and that endogenous antibodies are found bound to Aβ plaques. Immunohistochemical and western blot analyses showed an increase in endogenous immunoglobulins within the FUS-targeted cortex. Subsequently, microglia and astrocytes in FUS-treated cortical regions show signs of activation through increases in protein expression and changes in glial size, without changes in glial cell numbers. Enhanced activation of glia correlated with increased internalization of Aβ in microglia and astrocytes. Together these data demonstrate that FUS improved the bioavailability of endogenous antibodies and led to a temporal activation of glial cells, providing evidence towards antibody- and glia-dependent mechanisms of FUS-mediated plaque reduction.


Physics in Medicine and Biology | 2010

The impact of standing wave effects on transcranial focused ultrasound disruption of the blood–brain barrier in a rat model

Meaghan A. O'Reilly; Yuexi Huang; Kullervo Hynynen

Microbubble-mediated disruption of the blood-brain barrier (BBB) for targeted drug delivery using focused ultrasound shows great potential as a therapy for a wide range of brain disorders. This technique is currently at the pre-clinical stage and important work is being conducted in animal models. Measurements of standing waves in ex vivo rat skulls were conducted using an optical hydrophone and a geometry dependence was identified. Standing waves could not be eliminated through the use of swept frequencies, which have been suggested to eliminate standing waves. Definitive standing wave patterns were detected in over 25% of animals used in a single study. Standing waves were successfully eliminated using a wideband composite sharply focused transducer and a reduced duty cycle. The modified pulse parameters were used in vivo to disrupt the BBB in a rat indicating that, unlike some other bioeffects, BBB disruption is not dependent on standing wave conditions. Due to the high variability of standing waves and the inability to correctly estimate in situ pressures given standing wave conditions, attempts to minimize standing waves should be made in all future work in this field to ensure that results are clinically translatable.


PLOS ONE | 2012

High-Intensity Focused Ultrasound (HIFU) for Dissolution of Clots in a Rabbit Model of Embolic Stroke

Alison Burgess; Yuexi Huang; Adam Waspe; Milan Ganguly; David E. Goertz; Kullervo Hynynen

It is estimated that only 2–6% of patients receive thrombolytic therapy for acute ischemic stroke suggesting that alternative therapies are necessary. In this study, we investigate the potential for high intensity focused ultrasound (HIFU) to initiate thrombolysis in an embolic model of stroke. Iron-loaded blood clots were injected into the middle cerebral artery (MCA) of New Zealand White rabbits, through the internal carotid artery and blockages were confirmed by angiography. MRI was used to localize the iron-loaded clot and target the HIFU beam for treatment. HIFU pulses (1.5 MHz, 1 ms bursts, 1 Hz pulse repetition frequency, 20 s duration) were applied to initiate thrombolysis. Repeat angiograms and histology were used to assess reperfusion and vessel damage. Using 275 W of acoustic power, there was no evidence of reperfusion in post-treatment angiograms of 3 rabbits tested. In a separate group of animals, 415 W of acoustic power was applied and reperfusion was observed in 2 of the 4 (50%) animals treated. In the last group of animals, acoustic power was further increased to 550 W, which led to the reperfusion in 5 of 7 (∼70%) animals tested. Histological analysis confirmed thatthe sonicated vessels remained intact after HIFU treatment. Hemorrhage was detected outside of the sonication site, likely due to the proximity of the target vessel with the base of the rabbit skull. These results demonstrate the feasibility of using HIFU, as a stand-alone method, to cause effective thrombolysis without immediate damage to the targeted vessels. HIFU, combined with imaging modalities used to identify and assess stroke patients, could dramatically reduce the time to achieve flow restoration in patients thereby significantly increasing the number of patients which benefit from thrombolysis treatments.


Journal of Controlled Release | 2012

Focused ultrasound for targeted delivery of siRNA and efficient knockdown of Htt expression

Alison Burgess; Yuexi Huang; William Querbes; Dinah Sah; Kullervo Hynynen

RNA interference is a promising strategy for the treatment of Huntingtons disease (HD) as it can specifically decrease the expression of the mutant Huntingtin protein (Htt). However, siRNA does not cross the blood-brain barrier and therefore delivery to the brain is limited to direct CNS delivery. Non-invasive delivery of siRNA through the blood-brain barrier (BBB) would be a significant advantage for translating this therapy to HD patients. Focused ultrasound (FUS), combined with intravascular delivery of microbubble contrast agent, was used to locally and transiently disrupt the BBB in the right striatum of adult rats. 48h following treatment with siRNA, the right (treated) and the left (control) striatum were dissected and analyzed for Htt mRNA levels. We demonstrate that FUS can non-invasively deliver siRNA-Htt directly to the striatum leading to a significant reduction of Htt expression in a dose dependent manner. Furthermore, we show that reduction of Htt with siRNA-Htt was greater when the extent of BBB disruption was increased. This study demonstrates that siRNA treatment for knockdown of mutant Htt is feasible without the surgical intervention previously required for direct delivery to the brain.


Magnetic Resonance in Medicine | 2009

In vivo MR elastography of the prostate gland using a transurethral actuator.

Rajiv Chopra; Arvin Arani; Yuexi Huang; Mireia Musquera; Jeff Wachsmuth; Michael Bronskill; Donald B. Plewes

Conventional approaches for MR elastography (MRE) using surface drivers have difficulty achieving sufficient shear wave propagation in the prostate gland due to attenuation. In this study we evaluate the feasibility of generating shear wave propagation in the prostate gland using a transurethral device. A novel transurethral actuator design is proposed, and the performance of this device was evaluated in gelatin phantoms and in a canine prostate gland. All MRI was performed on a 1.5T MR imager using a conventional gradient‐echo MRE sequence. A piezoceramic actuator was used to vibrate the transurethral device along its length. Shear wave propagation was measured transverse and parallel to the rod at frequencies between 100 and 250 Hz in phantoms and in the prostate gland. The shear wave propagation was cylindrical, and uniform along the entire length of the rod in the gel experiments. The feasibility of transurethral MRE was demonstrated in vivo in a canine model, and shear wave propagation was observed in the prostate gland as well as along the rod. These experiments demonstrate the technical feasibility of transurethral MRE in vivo. Further development of this technique is warranted. Magn Reson Med, 2009.


BMC Neurology | 2010

Focused ultrasound-mediated bbb disruption is associated with an increase in activation of AKT: experimental study in rats

Shahrzad Jalali; Yuexi Huang; Daniel Dumont; Kullervo Hynynen

BackgroundThe Blood Brain Barrier (BBB) maintains the homeostasis of central nervous system by preventing the free passage of macromolecules from the systemic circulation into the brain. This normal physiological function of the BBB presents a challenge for delivery of therapeutic compounds into the brain. Recent studies have shown that the application of focused ultrasound together with ultrasound contrast agent (microbubbles) temporarily increases the permeability of the BBB. This effect is associated with breakdown of tight junctions, the structures that regulate the paracellular permeability of the endothelial cell layer. The influence of this ultrasound effect on the activation of intracellular signaling proteins is currently not well understood. Therefore, the aim of this study was to investigate the activation of cell survival signaling molecules in response to ultrasound-mediated BBB opening;MethodsThe BBB was disrupted in two four-spot lines (1-1.5 mm spacing) along the right hemisphere of rat brain with ultrasound beams (0.3 MPa, 120 s, 10 ms bursts, repetition frequency = 1 Hz) in the presence Definity microbubbles. Contrast-enhanced MRI images were acquired to assess the extent of BBB opening upon which the animals were sacrificed and the brains removed and processed for biochemical and immunohistochemical analyses;ResultsImmunoblotting of sonicated brain lysates resolved by SDS-PAGE demonstrated an increase in phosphorylation of Akt and its downstream signaling molecule, GSK3β, while the phosphorylation of MAPK remained unchanged. The elevated levels of pAkt and pGSK3β are still evident after 24 hours post-sonication, a time point where the integrity of the BBB is known to be re-established. Furthermore, immunofluoresence staining localized this increase in pAkt and pGSK3β levels to neuronal cells flanking the region of the disrupted BBB;ConclusionsOur data demonstrates that ultrasound-mediated BBB disruption causes an activation of the Akt signaling pathway in neuronal cells surrounding the disrupted BBB.


IEEE Transactions on Biomedical Engineering | 2012

Investigation of Standing-Wave Formation in a Human Skull for a Clinical Prototype of a Large-Aperture, Transcranial MR-Guided Focused Ultrasound (MRgFUS) Phased Array: An Experimental and Simulation Study

Junho Song; Aki Pulkkinen; Yuexi Huang; Kullervo Hynynen

Standing-wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30-cm diameter with 15-cm radius of curvature, low-frequency (230 kHz), hemispherical transcranial magnetic resonance-guided focused ultrasound phased array. Experimental and simulation studies were conducted with changing aperture size and f -number configurations of the phased array and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and antinodes of standing wave produced by the small-aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing-wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number.


Physics in Medicine and Biology | 2011

Simulations and measurements of transcranial low-frequency ultrasound therapy: skull-base heating and effective area of treatment

Aki Pulkkinen; Yuexi Huang; Junho Song; Kullervo Hynynen

Measurements of temperature elevations induced by sonications in a single intact cadaver skull filled with soft-tissue mimicking phantom material were performed using magnetic resonance thermometry. The sonications were done using a clinical transcranial ultrasound therapy device operating at 230 kHz and the measurements were compared with simulations done using a model incorporating both the longitudinal and shear wave propagation. Both the measurements and simulations showed that in some situations the temperature increase could be higher in the phantom material adjacent to the skull-base than at the focus, which could lead to undesired soft-tissue damage in treatment situations. On average the measurements of the sonicated locations, as well as the comparative simulations, showed 32 ± 64% and 49 ± 32% higher temperature elevations adjacent to the skull-base than at the focus, respectively. The simulation model was used to extend the measurements by simulating multiple sonications of brain tissue in five different skulls with and without correcting the aberrations caused by the skull on the ultrasound. Without aberration correction the closest sonications to the skulls that were treatable in any brain location without undesired tissue damage were at a distance of 19.1 ± 2.6 mm. None of the sonications beyond a distance of 41.2 ± 5.3 mm were found to cause undesired tissue damage. When using the aberration correction closest treatable, safe distances for sonications were found to be 16.0 ± 1.6  and 38.8 ± 3.8 mm, respectively. New active cooling of the skull-base through the nasal cavities was introduced and the treatment area was investigated. The closest treatable distance without aberration correction reduced to 17.4 ± 1.9 mm with the new cooling method. All sonications beyond a distance of 39.7 ± 6.6 mm were found treatable. With the aberration correction no difference in the closest treatable or the safety distance was found in comparison to sonications without nasal cavity cooling. To counteract undesired skull-base heating a new anti-focus within solid media was developed along with a new regularized phasing method. Mathematical bases for both the methods and simulations utilizing them were presented. It was found that utilizing the anti-focus in solid media and regularized phasing, the fraction of temperature increase of the brain tissue at the focus and the peak temperature increase adjacent to the skull-base can be increased from 1.00 to 1.95. This improves the efficiency of the sonication by reducing the energy transfer to the skull-base.

Collaboration


Dive into the Yuexi Huang's collaboration.

Top Co-Authors

Avatar

Kullervo Hynynen

Sunnybrook Research Institute

View shared research outputs
Top Co-Authors

Avatar

Michael L. Schwartz

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar

Nir Lipsman

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory J. Czarnota

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar

Alison Burgess

Sunnybrook Research Institute

View shared research outputs
Top Co-Authors

Avatar

Arjun Sahgal

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aki Pulkkinen

University of Eastern Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge