Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kun-Chen Lin is active.

Publication


Featured researches published by Kun-Chen Lin.


Journal of Pineal Research | 2014

Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury

Hong-Hwa Chen; Kun-Chen Lin; Christopher Glenn Wallace; Yen-Ta Chen; Chih-Chao Yang; Steve Leu; Chen Yl; Cheuk-Kwan Sun; Tzu-Hsien Tsai; Yung-Lung Chen; Sheng-Ying Chung; Chia-Lo Chang; Hon-Kan Yip

This study tested whether combined therapy with melatonin and apoptotic adipose‐derived mesenchymal stem cells (A‐ADMSCs) offered additional benefit in ameliorating sepsis‐induced acute kidney injury. Adult male Sprague–Dawley rats (n = 65) were randomized equally into five groups: Sham controls (SC), sepsis induced by cecal‐ligation and puncture (CLP), CLP‐melatonin, CLP‐A‐ADMSC, and CLP‐melatonin‐A‐ADMSC. Circulating TNF‐α level at post‐CLP 6 hr was highest in CLP and lowest in SC groups, higher in CLP‐melatonin than in CLP‐A‐ADMSC and CLP‐melatonin‐A‐ADMSC groups (all P < 0.001). Immune reactivity as reflected in the number of splenic helper‐, cytoxic‐, and regulatory‐T cells at post‐CLP 72 hr exhibited the same pattern as that of circulating TNF‐α among all groups (P < 0.001). The histological scoring of kidney injury and the number of F4/80+ and CD14+ cells in kidney were highest in CLP and lowest in SC groups, higher in CLP‐melatonin than in CLP‐A‐ADMSC and CLP‐melatonin‐A‐ADMSC groups, and higher in CLP‐A‐ADMSC than in CLP‐melatonin‐A‐ADMSC groups (all P < 0.001). Changes in protein expressions of inflammatory (RANTES, TNF‐1α, NF‐κB, MMP‐9, MIP‐1, IL‐1β), apoptotic (cleaved caspase 3 and PARP, mitochondrial Bax), fibrotic (Smad3, TGF‐β) markers, reactive‐oxygen‐species (NOX‐1, NOX‐2), and oxidative stress displayed a pattern identical to that of kidney injury score among the five groups (all P < 0.001). Expressions of antioxidants (GR+, GPx+, HO‐1, NQO‐1+) were lowest in SC group and highest in CLP‐melatonin‐A‐ADMSC group, lower in CLP than in CLP‐melatonin and CLP‐A‐ADMSC groups, and lower in CLP‐melatonin‐ than in CLP‐A‐ADMSC‐tretaed animals (all P < 0.001). In conclusion, combined treatment with melatonin and A‐ADMSC was superior to A‐ADMSC alone in protecting the kidneys from sepsis‐induced injury.


International Journal of Cardiology | 2016

Combination of adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes for protecting kidney from acute ischemia–reperfusion injury

Kun-Chen Lin; Hon-Kan Yip; P.L. Shao; Shun-Cheng Wu; Kuan-Hung Chen; Yen-Ta Chen; Chih-Chao Yang; Cheuk-Kwan Sun; Gour-Shenq Kao; Sheng-Yi Chen; Han-Tan Chai; Chia-Lo Chang; Chih-Hung Chen; Mel S. Lee

BACKGROUND In this study, we tested the hypothesis that a combined adipose-derived mesenchymal stem cell (ADMSC) and ADMSC-derived exosome therapy protected rat kidney from acute ischemia-reperfusion (IR) injury (i.e., ligation of both renal arteries for 1h and reperfusion for 72h prior to euthanization). METHODS AND RESULTS Adult-male SD rats (n=40) were equally categorized into group 1 (sham control), group 2 (IR), group 3 [IR+exosome (100μg)], group 4 [IR+ADMSC (1.2×10(6) cells)], and group 5 (IR-exosome-ADMSC). All therapies were performed at 3h after IR procedure from venous administration. By 72h, the creatinine level and kidney injury score were the lowest in group 1 and the highest in group 2, significantly higher in group 3 than in groups 4 and 5, and significantly higher in group 4 than in group 5 (all P<0.0001). The protein expression of inflammatory (TNF-α/NF-κB/IL-1β/MIF/PAI-1/Cox-2), oxidative-stress (NOX-1/NOX-2/oxidized protein), apoptotic (Bax/caspase-3/PARP), and fibrotic (Smad3/TGF-β) biomarkers showed an identical pattern, whereas the anti-apoptotic (Smad1/5, BMP-2) and angiogenesis (CD31/vWF/angiopoietin) biomarkers and mitochondrial cytochrome-C showed an opposite pattern of creatinine level among the five groups (all P<0.001). The microscopic findings of glomerular-damage (WT-1), renal tubular-damage (KIM-1), DNA-damage (γ-H2AX), inflammation (MPO/MIF/CD68) exhibited an identical pattern, whereas the podocyte components (podocin/p-cadherin/synaptopodin) displayed a reversed pattern of creatinine level (all P<0.0001). CONCLUSION Combined exosome-ADMSC therapy was superior to either one for protecting kidney from acute IR injury.


Oncotarget | 2016

Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke

Kuan-Hung Chen; Chih-Hung Chen; Christopher Glenn Wallace; Chun-Man Yuen; Gour-Shenq Kao; Yi-Ling Chen; Pei-Lin Shao; Yung-Lung Chen; Han-Tan Chai; Kun-Chen Lin; Chu-Feng Liu; Hsueh-Wen Chang; Mel S. Lee; Hon-Kan Yip

We tested the hypothesis that combined xenogenic (from mini-pig) adipose-derived mesenchymal stem cell (ADMSC) and ADMSC-derived exosome therapy could reduce brain-infarct zone (BIZ) and enhance neurological recovery in rat after acute ischemic stroke (AIS) induced by 50-min left middle cerebral artery occlusion. Adult-male Sprague-Dawley rats (n = 60) were divided equally into group 1 (sham-control), group 2 (AIS), group 3 [AIS-ADMSC (1.2×106 cells)], group 4 [AIS-exosome (100μg)], and group 5 (AIS-exosome-ADMSC). All therapies were provided intravenously at 3h after AIS procedure. BIZ determined by histopathology (by day-60) and brain MRI (by day-28) were highest in group 2, lowest in group 1, higher in groups 3 and 4 than in group 5, but they showed no difference between groups 3 and 4 (all p < 0.0001). By day-28, sensorimotor functional results exhibited an opposite pattern to BIZ among the five groups (p < 0.005). Protein expressions of inflammatory (inducible nitric oxide synthase/tumor necrosis factor-α/nuclear factor-κB/interleukin-1β/matrix metalloproteinase-9/plasminogen activator inhibitor-1/RANTES), oxidative-stress (NOX-1/NOX-2/oxidized protein), apoptotic (caspase-3/ Poly-ADP-ribose polymerase), and fibrotic (Smad3/transforming growth factor-β) biomarkers, and cellular expressions of brain-damaged (γ-H2AX+/ XRCC1-CD90+/p53BP1-CD90+), inflammatory (CD11+/CD68+/glial fibrillary acid protein+) and brain-edema (aquaporin-4+) markers showed a similar pattern of BIZ among the groups (all n < 0.0001). In conclusion, xenogenic ADMSC/ADMSC-derived exosome therapy was safe and offered the additional benefit of reducing BIZ and improving neurological function in rat AIS.


Journal of Pineal Research | 2016

The cardioprotective effect of melatonin and exendin-4 treatment in a rat model of cardiorenal syndrome

Sarah Chua; Fan-Yen Lee; Hsin-Ju Chiang; Kuan-Hung Chen; Hung-I Lu; Yen-Ta Chen; Chih-Chao Yang; Kun-Chen Lin; Yi-Ling Chen; Gour-Shenq Kao; Chih-Hung Chen; Hsueh-Wen Chang; Hon-Kan Yip

We investigated the cardioprotective effect of melatonin (Mel) and exendin‐4 (Ex4) treatment in a rat model of cardiorenal syndrome (CRS). Adult male SD rats (n=48) were randomly and equally divided into sham control (SC), dilated cardiomyopathy (DCM) (doxorubicin 7 mg/kg i.p. every five days/4 doses), CRS (defined as DCM+CKD) only, CRS‐Mel (20 mg/kg/d), CRS‐Ex4 (10 μg/kg/d), and CRS‐Mel‐Ex4 groups. In vitro results showed protein expressions of oxidative stress (NOX‐1/NOX‐2/oxidized protein), DNA/mitochondrial damage (γ‐H2AX/cytosolic cytochrome c), apoptosis (cleaved caspase‐3/PARP), and senescence (β‐galactosidase cells) biomarkers were upregulated, whereas mitochondrial ATP level was decreased in doxorubicin/p‐cresol‐treated H9c2 cells that were revised by Mel and Ex4 treatments (all P<.001). By day 60, LVEF was highest in the SC and lowest in the CRS, significantly lower in the DCM than in other treatment groups, lower in the CRS‐Mel and CRS‐Ex4 than in the CRS‐Mel‐Ex4, and lower in the CRS‐Mel than in the CRS‐Ex4, whereas LV chamber size and histopathology score showed a pattern opposite to that of LVEF among all groups (all P<.001). Plasma creatinine level was highest in the CRS and lowest in the SC and progressively decreased from the CRS‐Mel, CRS‐Ex4, CRS‐Mel‐Ex4 to DCM (P<.0001). Protein expressions of inflammation (TNF‐α/NF‐κB/MMP‐2/MMP‐9/IL‐1β), apoptosis/DNA damage (Bax/c‐caspase‐3/c‐PARP/γ‐H2AX), fibrosis (Smad3/TGF‐β), oxidative stress (NOX‐1/NOX‐2/NOX‐4/oxidized protein), cardiac hypertrophy/pressure overload (BNP/β‐MHC), and cardiac integrity (Cx43/α‐MHC) biomarkers in LV myocardium showed an opposite pattern compared to that of LVEF among all groups (all P<.001). Fibrotic area, DNA damage (γ‐H2AX+/53BP1+CD90+/XRCC1+CD90+), and inflammation (CD14+/CD68+) biomarkers in LV myocardium displayed a pattern opposite to that of LVEF among all groups (all P<.001). Combined melatonin and exendin‐4 treatment suppressed CRS‐induced deterioration of LVEF and LV remodeling.


International Journal of Cardiology | 2015

Intra-carotid arterial administration of autologous peripheral blood-derived endothelial progenitor cells improves acute ischemic stroke neurological outcomes in rats.

Yung-Lung Chen; Tzu-Hsien Tsai; Christopher Glenn Wallace; Yi-Ling Chen; Tien-Hung Huang; Pei-Hsun Sung; Chun-Man Yuen; Cheuk-Kwan Sun; Kun-Chen Lin; Han-Tan Chai; Jiunn-Jye Sheu; Fan-Yen Lee; Hon-Kan Yip

OBJECTIVE We tested the hypothesis that transfusion of autologous peripheral blood-derived endothelial progenitor cells (PBDEPC) via the internal carotid artery could reduce brain-infarct zone (BIZ) and neurological deficit in rats following acute ischemic stroke (IS) induced by 50-min left middle cerebral artery occlusion. DESIGN Adult male Sprague-Dawley rats (n=60) were equally divided into group 1 [sham control (SC)], group 2 [SC-PBDEPC (5.7 × 10(6)/kg)], group 3 (IS), group 4 [IS-low-dose PBDEPC (1.7 × 10(6)/kg)], group 5 [IS-high-dose PBDEPC (5.7×10(6)/kg)]. Groups 2 to 5 received G-CSF (35 μg/kg subcutaneously) for 4 days before drawing blood for PBDEPC culture. MEASUREMENTS AND MAIN RESULTS By day 90, BIZ determined by histopathology (area) and brain MRI (volume) were highest in group 3, lowest in groups 1 and 2, higher in group 4 than in group 5 (all p<0.0001), and not significantly different between groups 1 and 2. Sensorimotor functional results exhibited an opposite pattern of BIZ among groups 3 to 5 (p<0.005). Angiogenesis biomarkers (SDF-1α, CXCR4, VEGF, angiopoietin-1) significantly increased progressively from groups 1 and 2 to group 5 (all p<0.0001). Oxidative-stress (NOX-1, NOX-2, oxidized protein), apoptotic (cleaved caspase 3 and PARP, mitochondrial Bax), inflammatory (MMP-9, TNF-α, AQP-4, GFAP, iNOS), and brain-damaged (cytosolic cytochrome-C) biomarkers showed an identical pattern, whereas anti-inflammatory (Bcl-2), mitochondrial preservation (mitochondrial cytochrome-C, PGC-1α), and endothelial function (CD31+, vWF+, eNOS) biomarkers, and vessel density showed an opposite pattern of BIZ among these five groups (all p<0.001). CONCLUSION Higher-dose was superior to lower-dose EPC treatment for reducing BIZ and improving neurological functional outcome.


Journal of Translational Medicine | 2012

Combination of cilostazol and clopidogrel attenuates Rat critical limb ischemia

Jiunn-Jye Sheu; Kun-Chen Lin; Ching-Yen Tsai; Tzu-Hsien Tsai; Steve Leu; Chia-Hung Yen; Yung-Lung Chen; Hsueh-Wen Chang; Cheuk-Kwan Sun; Sarah Chua; Jenq-Lin Yang; Hon-Kan Yip

Background and aimProcedural failure and untoward clinical outcomes after surgery remain problematic in critical limb ischemia (CLI) patients. This study tested a clopidogrel-cilostazol combination treatment compared with either treatment alone in attenuating CLI and improving CLI-region blood flow in rats.MethodsMale Sprague–Dawley rats (n = 40) were equally divided into five groups: control, CLI induction only, CL I + cilostazol (12.0 mg/day/kg), CLI + clopidogrel (8.0 mg/kg/day) and CLI + combined cilostazol-clopidogrel. After treatment for 21 days, Laser Doppler imaging was performed.ResultsOn day 21, the untreated CLI group had the lowest ratio of ischemic/normal blood flow (p < 0.001). Inflammation measured by VCAM-1 protein expression; oxidative stress; PAI-1, MMP-9 and TNF-α mRNA expressions; and immunofluorescence staining (IF) of CD68+ cells was lower with combined treatment than with the other treatments, and lower in the two single-treatment groups than the untreated CLI group (all p < 0.01). Anti-inflammatory mRNA expression of interleukin-10, and eNOS showed a reverse pattern among these groups. Apoptosis measured by Bax, caspase-3 and PARP; and muscle damage measured by cytosolic cytochrome-C, and serum and muscle micro-RNA-206 were all lowest with combination treatment, and the two single-treatment groups showed lower values than the untreated group (all p < 0.001). Angiogenesis measured by eNOS, IF staining of CD31+ and vWF + cells; and number of vessels in CLI region were highest with combination treatment and higher in the single-treatment groups than the untreated group (all p < 0.001).ConclusionCombined cilostazol-clopidogrel therapy is superior to either agent alone in improving ischemia in rodent CLI.


European Journal of Pharmaceutical Sciences | 2012

Chronic exposure to environmental contaminant nonylphenol exacerbates adenine-induced chronic renal insufficiency: role of signaling pathways and therapeutic impact of rosuvastatin.

Chia-Hung Yen; Kun-Chen Lin; Steve Leu; Cheuk-Kwan Sun; Li-Teh Chang; Han-Tan Chai; Sheng-Ying Chung; Hsueh-Wen Chang; Sheung-Fat Ko; Yen-Ta Chen; Hon-Kan Yip

Although chronic exposure to environmental contaminants is hazardous to health, the association between chronic kidney disease (CKD) and nonylphenol (NP), a common environmental compound, remains unclear. This study tested the hypothesis that chronic NP exposure aggravated adenine (AD)-induced CKD that could be mitigated with rosuvastatin treatment. Fifty Wistar rats were randomly (n=10/each group) categorized into normal controls (N(C)), NP only (2.0mg/kg/day), AD only (0.25% AD in fodder), combined NP-AD, and NP-AD with rosuvastatin (20.0mg/kg/day) (NP-AD-R(OSU)). All animals received treatment for 24 weeks prior to being sacrificed. Results showed that ratio of urine protein to creatinine were increased in NP-AD group than in groups N(C), NP, and AD, but reduced in NP-AD-R(OSU) group compared with NP-AD group (all p<0.003). Protein expression of TGF-β and phosphorylated Smad3, indexes of tissue fibrosis, were increased in NP-AD group than in groups N(C), NP and AD, but reduced in NP-AD-R(OSU) group compared with NP-AD group (all p<0.001). BMP-2 and phosphorylated Smad1/5, two indicators of anti-fibrosis, were lower in NP-AD group than in groups N(C), NP and AD, but higher in NP-AD-R(OSU) group compared with NP-AD group (all p<0.001). Protein expressions of JNK and PKC-α in membranous compartment were higher in group NP-AD than in groups N(C), NP and AD, but reduced in NP-AD-R(OSU) group compared with NP-AD group (all p<0.001). More TGF-β+cells but less BMP-2+, CD31+, vWF+and GR+cells were noted in groups AD and NP-AD than in groups N(C), NP and NP-AD-R(OSU) (all p<0.04). In conclusion, NP exposure worsened aggravated AD-induced CKD that could be ameliorated with rosuvastatin treatment.


Oncotarget | 2018

Melatonin attenuated brain death tissue extract-induced cardiac damage by suppressing DAMP signaling

Pei-Hsun Sung; Fan-Yen Lee; Ling-Chun Lin; Kuan-Hung Chen; Hung-Sheng Lin; Pei-Lin Shao; Yi-Chen Li; Yi-Ling Chen; Kun-Chen Lin; Chun-Man Yuen; Hsueh-Wen Chang; Mel S. Lee; Hon-Kan Yip

We tested the hypothesis that melatonin prevents brain death (BD) tissue extract (BDEX)-induced cardiac damage by suppressing inflammatory damage-associated molecular pattern (DAMP) signaling in rats. Six hours after BD induction, levels of a DAMP component (HMGB1) and inflammatory markers (TLR-2, TLR-4, MYD88, IκB, NF-κB, IL-1β, IFN-γ, TNF-α and IL-6) were higher in brain tissue from BD animals than controls. Levels of HMGB1 and inflammatory markers were higher in BDEX-treated H9C2 cardiac myoblasts than in cells treated with healthy brain tissue extract. These increases were attenuated by melatonin but re-induced with luzindole (all P < 0.001). Additional male rats (n = 30) were divided into groups 1 (negative control), 2 (healthy brain tissue extract implanted in the left ventricular myocardium [LVM]), 3 (BDEX-LVM), 4 (BDEX-LVM + melatonin), and 5 (BDEX-LVM + melatonin + luzindole). Collagen deposition/fibrosis and LVM levels of MTR2, HMGB1, inflammatory markers, oxidative stress, apoptosis, mitochondrial damage and DNA damage were highest in group 3, lowest in groups 1 and 2, and higher in group 5 than in group 4. Heart function and LVM levels of MTR1 and anti-inflammatory, mitochondrial-integrity and anti-oxidative markers exhibited a pattern opposite that of the inflammatory markers in the five groups (all P < 0.0001). These results indicate melatonin inhibits BDEX-induced cardiac damage by suppressing the DAMP inflammatory axis.


Mediators of Inflammation | 2018

Shock Wave Therapy Enhances Mitochondrial Delivery into Target Cells and Protects against Acute Respiratory Distress Syndrome

Kun-Chen Lin; Christopher Glenn Wallace; Tsung-Cheng Yin; Pei-Hsun Sung; Kuan-Hung Chen; Hung-I Lu; Han-Tan Chai; Chih-Hung Chen; Yi-Ling Chen; Yi-Chen Li; P.L. Shao; Mel S. Lee; Jiunn-Jye Sheu; Hon-Kan Yip

This study tested the hypothesis that shock wave therapy (SW) enhances mitochondrial uptake into the lung epithelial and parenchymal cells to attenuate lung injury from acute respiratory distress syndrome (ARDS). ARDS was induced in rats through continuous inhalation of 100% oxygen for 48 h, while SW entailed application 0.15 mJ/mm2 for 200 impulses at 6 Hz per left/right lung field. In vitro and ex vivo studies showed that SW enhances mitochondrial uptake into lung epithelial and parenchyma cells (all p < 0.001). Flow cytometry demonstrated that albumin levels and numbers of inflammatory cells (Ly6G+/CD14+/CD68+/CD11b/c+) in bronchoalveolar lavage fluid were the highest in untreated ARDS, were progressively reduced across SW, Mito, and SW + Mito (all p < 0.0001), and were the lowest in sham controls. The same profile was also seen for fibrosis/collagen deposition, levels of biomarkers of oxidative stress (NOX-1/NOX-2/oxidized protein), inflammation (MMP-9/TNF-α/NF-κB/IL-1β/ICAM-1), apoptosis (cleaved caspase 3/PARP), fibrosis (Smad3/TGF-β), mitochondrial damage (cytosolic cytochrome c) (all p < 0.0001), and DNA damage (γ-H2AX+), and numbers of parenchymal inflammatory cells (CD11+/CD14+/CD40L+/F4/80+) (p < 0.0001). These results suggest that SW-assisted Mito therapy effectively protects the lung parenchyma from ARDS-induced injury.


Oncotarget | 2017

Therapeutic effects of adipose-derived mesenchymal stem cells against brain death-induced remote organ damage and post-heart transplant acute rejection

Hon-Kan Yip; Mel S. Lee; Cheuk-Kwan Sun; Kuan-Hung Chen; Han-Tan Chai; Pei-Hsun Sung; Kun-Chen Lin; Sheung-Fat Ko; Chun-Man Yuen; Chu-Feng Liu; Pei-Lin Shao; Fan-Yen Lee

We tested the hypothesis that allogenic adipose-derived mesenchymal stem cells (ADMSCs) alleviated brain death (BD)-induced remote organ damage and events of post heart-transplant acute rejection. To determine the impact of BD on remote organ damage, adult-male F344 rats (n=24) were categorized sham-control (SC), BD and BDMSC (allogenic ADMSC/1.2 × 106 cells/derived from F344 by intravenous transfusion 3 h after BD procedure). To determine the protective effect of allogenic ADMSCs, animals (n=8/each group in F344/Lewis) were categorized into groups BD-T(F344 heart transplanted into Lewis by 6h after BD), BD-TMSC(D1/3) (BD induction for 6h then heart transplantation, and allogenic ADMSCs transfusion at days 1 and 5 after heart transplantation), BD-TMSC(3h) (BD + ADMSC/1.2 × 106 cells at 3h and heart transplantation at 6h after BD) and BD-TMSC(3h, D1/3) [BD + ADMSC/1.2 × 106 cells at 3h and heart transplantation at 6h after BD, then ADMSC therapy by days 1/3]. At day 5 post procedure, liver, kidney and heart specimens showed higher molecular-cellular levels of inflammation, immune reaction, apoptosis and fibrosis in BD than in SC that were reversed in BDMSC (all P < 0.0001). These molecular-cellular expressions and circulating/splenic levels of innate/adoptive immune cells were higher in BD-T, lowest in BD-TMSC(3h, D1/3) and higher BD-TMSC(3h) in than BD-TMSC(D1/3), whereas heart function showed an opposite pattern among the four groups (all P < 0.001). In conclusion, ADMSCs suppressed BD-caused remote organ damage and heart-transplant rejection.

Collaboration


Dive into the Kun-Chen Lin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hsueh-Wen Chang

National Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge