Kun Tian
University of Utah
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kun Tian.
Materials Science and Engineering: C | 2014
Kun Tian; Megan C. Prestgard; Ashutosh Tiwari
Currently, there is an overwhelming demand for the development and improvement of glucose sensors. Not only has the number of people requiring these sensors significantly increased over the last decade, so has the demand to make sensors which are both biocompatible and have increased sensing capabilities as compared to current technologies. In order to meet these needs, a move towards nonenzymatic glucose sensors has begun. These new sensors have garnered significant interest due to their capacity to achieve continuous glucose monitoring, their high stability compared to traditional glucose sensors, and the ease of their fabrication. Research has been extensively geared towards the preparation of these nonenzymatic glucose sensors from novel materials, often with unique micro- or nano-structures, which possess ideal properties for electrochemical biosensor applications. In recent years, a variety of materials including noble metals, metal oxides, carbon nanotubes, graphene, polymers, and composites have been explored for their electrocatalytic response to the oxidation of glucose. In this review, the most recent advances in nonenzymatic glucose sensors are visited, with the focus being on the last five years of research.
Materials Science and Engineering: C | 2015
Kun Tian; Saji Alex; Gene Siegel; Ashutosh Tiwari
A novel electrochemical glucose sensor was developed by employing a composite film of plant-like Zinc oxide (ZnO) and chitosan stabilized spherical gold nanoparticles (AuNPs) on which Glucose oxidaze (GOx) was immobilized. The ZnO was deposited on an indium tin oxide (ITO) coated glass and the AuNPs of average diameter of 23 nm were loaded on ZnO as the second layer. The prepared ITO/ZnO/AuNPs/GOx bioelectrode exhibited a low value of Michaelis-Menten constant of 1.70 mM indicating a good bio-matrix for GOx. The studies of electrochemical properties of the electrode using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that, the presence of AuNPs provides significant enhancement of the electron transfer rate during redox reactions. The linear sweep voltammetry (LSV) shows that the ITO/ZnO/AuNPs/GOx based sensor has a high sensitivity of 3.12 μA·mM(-1)·cm(-2) in the range of 50 mg/dL to 400 mg/dL glucose concentration. The results show promising application of the gold nanoparticle modified plant-like ZnO composite bioelectrode for electrochemical sensing of glucose.
Scientific Reports | 2017
Shrikant Saini; Haritha Sree Yaddanapudi; Kun Tian; Yinong Yin; David Magginetti; Ashutosh Tiwari
The potential of thermoelectric materials to generate electricity from the waste heat can play a key role in achieving a global sustainable energy future. In order to proceed in this direction, it is essential to have thermoelectric materials that are environmentally friendly and exhibit high figure of merit, ZT. Oxide thermoelectric materials are considered ideal for such applications. High thermoelectric performance has been reported in single crystals of Ca3Co4O9. However, for large scale applications single crystals are not suitable and it is essential to develop high-performance polycrystalline thermoelectric materials. In polycrystalline form, Ca3Co4O9 is known to exhibit much weaker thermoelectric response than in single crystal form. Here, we report the observation of enhanced thermoelectric response in polycrystalline Ca3Co4O9 on doping Tb ions in the material. Polycrystalline Ca3−xTbxCo4O9 (x = 0.0–0.7) samples were prepared by a solid-state reaction technique. Samples were thoroughly characterized using several state of the art techniques including XRD, TEM, SEM and XPS. Temperature dependent Seebeck coefficient, electrical resistivity and thermal conductivity measurements were performed. A record ZT of 0.74 at 800 K was observed for Tb doped Ca3Co4O9 which is the highest value observed till date in any polycrystalline sample of this system.
Scientific Reports | 2016
Haritha Sree Yaddanapudi; Kun Tian; Shiang Teng; Ashutosh Tiwari
We are reporting a facile way to prepare nickel/carbon nanocomposites from wood as a novel electrode material for supercapacitors. The surface morphology and the structure of the as-prepared electrodes were studied by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that after high-temperature carbonization process, the wood is converted into graphitic carbon with nickel nanoparticles uniformly distributed within the three dimensional structure of the wood. Electrochemical characterization such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge measurements were conducted. These results showed that the introduction of nickel into the carbonized wood improves the specific capacitance and the cyclic stability of the nanocomposite electrode over that of the pure carbonized wood electrode. The composite electrode displayed an enhanced capacitive performance of 3616 F/g at 8 A/g, and showed an excellent capacitance retention after 6000 charge-discharge cycles. These results endow the nickel nanoparticles impregnated carbonized wood with a great potential for future application in supercapacitors.
Materials Science and Engineering: C | 2017
Kun Tian; Gene Siegel; Ashutosh Tiwari
The development of simple and cost-effective methods for the detection and treatment of Hg2+ in the environment is an important area of research due to the serious health risk that Hg2+ poses to humans. Colorimetric sensing based on the induced aggregation of nanoparticles is of great interest since it offers a low cost, simple, and relatively rapid procedure, making it perfect for on-site analysis. Herein we report the development of a simple colorimetric sensor for the selective detection and estimation of mercury ions in water, based on chitosan stabilized gold nanoparticles (AuNPs) and 2,6-pyridinedicarboxylic acid (PDA). In the presence of Hg2+, PDA induces the aggregation of AuNPs, causing the solution to change colors varying from red to blue, depending on the concentration of Hg2+. The formation of aggregated AuNPs in the presence of Hg2+ was confirmed using transmission electron microscopy (TEM) and UV-Vis spectroscopy. The method exhibits linearity in the range of 300nM to 5μM and shows excellent selectivity towards Hg2+ among seventeen different metal ions and was successfully applied for the detection of Hg2+ in spiked river water samples. The developed technique is simple and superior to the existing techniques in that it allows detection of Hg2+ using the naked eye and simple and rapid colorimetric analysis, which eliminates the need for sophisticated instruments and sample preparation methods.
IEEE Journal of Selected Topics in Quantum Electronics | 2017
Sara Arezoomandan; Prashanth Gopalan; Kun Tian; Ashish Chanana; Ajay Nahata; Ashutosh Tiwari; Berardi Sensale-Rodriguez
In this study, we extend recent investigations on graphene/metal hybrid tunable terahertz metamaterials to other two-dimensional (2-D) materials beyond graphene. For the first time, use of a nongraphitic 2-D material, molybdenum disulfide (MoS2), is reported as the active medium on a terahertz metamaterial device. For this purpose, high-quality few atomic layer MoS2 films with controlled numbers of layers were deposited on host substrates by means of pulsed laser deposition methods. The terahertz conductivity swing in those films is studied under optical excitation. Although no-appreciable conductivity modulation is observed in single-layer MoS2 samples, a substantial conductivity swing, i.e., 0 to ~0.6 mS, is seen in samples with ~60 atomic layers. Therefore, although exhibiting much smaller maximum terahertz conductivity than that in graphene, which is a consequence of much smaller carrier mobility, MoS2 can still be employed for terahertz applications by means of utilizing multilayer films. With this in mind, we design and demonstrate optically actuated terahertz metamaterials that simultaneously exhibit a large modulation depth (i.e., >2× larger than the intrinsic modulation depth by a bare MoS2 film) and low insertion loss (i.e., <;3 dB). The advantages of using a 2-D material with a bandgap, such as MoS2, rather than a gapless material, such as graphene, are: 1) a reduced insertion loss, which is owed to the possibility of achieving zero minimum conductivity, and 2) an enhanced modulation depth for a given maximum conductivity level, which is due to the possibility of placing the active material in a much closer proximity to the metallic frequency selective surface, thus allowing us to take full advantage of the near-field enhancement. These results indicate the promise of layered 2D materials beyond graphene for terahertz applications.
Sensors | 2017
Bharati Tudu; Kun Tian; Ashutosh Tiwari
Magnetic materials with perpendicular magnetic anisotropy (PMA) have wide-ranging applications in magnetic recording and sensing devices. Multilayers comprised of ferromagnetic and non-magnetic metals (FM–NM) are interesting materials, as their magnetic anisotropy depends strongly on composition and growth parameters. In this context, (Co/Pd) multilayers have gained huge interest recently due to their robustness and tunable PMA. Here, we report a systematic study of the effect of composition on the magnetic anisotropy of (Co/Pd) multilayers grown by Direct Current (DC) magnetron sputtering. Four different series of (Co/Pd)×10 multilayers with different thicknesses of Co and Pd were examined. Vibrating sample magnetometery was used to determine the magnetic anisotropy of these films. X-ray diffraction and transmission electron microscopy experiments were performed to understand the structural morphology of the films. Our results showed that (Co/Pd)×10 multilayers exhibit PMA when the Co to Pd ratio is less than or equal to 1 and the thickness of Co layers is not more than 5 Å. Maximum effective anisotropy energy is shown by the films with a Co to Pd ratio of 1/3.
Physical Review B | 2017
Kun Tian; Z. Yue; David Magginetti; M. E. Raikh; Ashutosh Tiwari
Valley-spin coupling in transition-metal dichalcogenides (TMDs) can result in unusual spin transport behaviors under an external magnetic field. Nonlocal resistance measured from 2D materials such as TMDs via electrical Hanle experiments are predicted to exhibit nontrivial features, compared with results from conventional materials due to the presence of intervalley scattering as well as a strong internal spin-orbit field. Here, for the first time, we report the all-electrical injection and non-local detection of spin polarized carriers in trilayer MoS_2 films. We calculate the Hanle curves theoretically when the separation between spin injector and detector is much larger than spin diffusion length, \lamda_s. The experimentally observed curve matches the theoretically-predicted Hanle shape under the regime of slow intervalley scattering. The estimated spin life-time was found to be around 110 ps at 30 K.
Latin America Optics and Photonics Conference (2016), paper LW2B.4 | 2016
Sara Arezoomandan; Rusen Yan; Prashanth Gopalan; Kun Tian; Ashish Chanana; Ashutosh Tiwari; Huili Grace Xing; Ajay Nahata; Berardi Sensale-Rodriguez
In this work we analyze metamaterial terahertz modulators consisting of 2D-material/metal hybrid-structures. Influence of the near-field enhancement in the modulator performance is discussed. Devices are fabricated and tested using graphene and MoS2 as active materials.
Advanced electronic materials | 2016
Kachirayil J. Saji; Kun Tian; Michael Snure; Ashutosh Tiwari