Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kunfu Ouyang is active.

Publication


Featured researches published by Kunfu Ouyang.


Nature | 2008

A myocardial lineage derives from Tbx18 epicardial cells

Chen-Leng Cai; Jody C. Martin; Yunfu Sun; Li Cui; Lianchun Wang; Kunfu Ouyang; Lei Yang; Lei Bu; Xingqun Liang; Xiaoxue Zhang; William B. Stallcup; Christopher P. Denton; Andrew D. McCulloch; Ju Chen; Sylvia M. Evans

Understanding the origins and roles of cardiac progenitor cells is important for elucidating the pathogenesis of congenital and acquired heart diseases. Moreover, manipulation of cardiac myocyte progenitors has potential for cell-based repair strategies for various myocardial disorders. Here we report the identification in mouse of a previously unknown cardiac myocyte lineage that derives from the proepicardial organ. These progenitor cells, which express the T-box transcription factor Tbx18, migrate onto the outer cardiac surface to form the epicardium, and then make a substantial contribution to myocytes in the ventricular septum and the atrial and ventricular walls. Tbx18-expressing cardiac progenitors also give rise to cardiac fibroblasts and coronary smooth muscle cells. The pluripotency of Tbx18 proepicardial cells provides a theoretical framework for applying these progenitors to effect cardiac repair and regeneration.


Nature Cell Biology | 2011

Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy

Jem A. Efe; Simon Hilcove; Janghwan Kim; Hongyan Zhou; Kunfu Ouyang; Gang Wang; Ju Chen; Sheng Ding

Here we show that conventional reprogramming towards pluripotency through overexpression of Oct4, Sox2, Klf4 and c-Myc can be shortcut and directed towards cardiogenesis in a fast and efficient manner. With as little as 4 days of transgenic expression of these factors, mouse embryonic fibroblasts (MEFs) can be directly reprogrammed to spontaneously contracting patches of differentiated cardiomyocytes over a period of 11–12 days. Several lines of evidence suggest that a pluripotent intermediate is not involved. Our method represents a unique strategy that allows a transient, plastic developmental state established early in reprogramming to effectively function as a cellular transdifferentiation platform, the use of which could extend beyond cardiogenesis. Our study has potentially wide-ranging implications for induced pluripotent stem cell (iPSC)-factor-based reprogramming and broadens the existing paradigm.


Nature | 2009

Calcium Flickers Steer Cell Migration

Chaoliang Wei; Xianhua Wang; Min Chen; Kunfu Ouyang; Long-Sheng Song; Heping Cheng

Directional movement is a property common to all cell types during development and is critical to tissue remodelling and regeneration after damage. In migrating cells, calcium has a multifunctional role in directional sensing, cytoskeleton redistribution, traction force generation, and relocation of focal adhesions. Here we visualize high-calcium microdomains (‘calcium flickers’) and their patterned activation in migrating human embryonic lung fibroblasts. Calcium flicker activity is dually coupled to membrane tension (by means of TRPM7, a stretch-activated Ca2+-permeant channel of the transient receptor potential superfamily) and chemoattractant signal transduction (by means of type 2 inositol-1,4,5-trisphosphate receptors). Interestingly, calcium flickers are most active at the leading lamella of migrating cells, displaying a 4:1 front-to-rear polarization opposite to the global calcium gradient. When exposed to a platelet-derived growth factor gradient perpendicular to cell movement, asymmetric calcium flicker activity develops across the lamella and promotes the turning of migrating fibroblasts. These findings show how the exquisite spatiotemporal organization of calcium microdomains can orchestrate complex cellular processes such as cell migration.


Cell | 2013

Direct Conversion of Fibroblasts to Neurons by Reprogramming PTB-Regulated MicroRNA Circuits

Yuanchao Xue; Kunfu Ouyang; Jie Huang; Yu Zhou; Hong Ouyang; Hairi Li; Gang Wang; Qi-Jia Wu; Chaoliang Wei; Yanzhen Bi; Li Jiang; Zhiqiang Cai; Hui Sun; Kang Zhang; Yi Zhang; Ju Chen; Xiang-Dong Fu

The induction of pluripotency or trans-differentiation of one cell type to another can be accomplished with cell-lineage-specific transcription factors. Here, we report that repression of a single RNA binding polypyrimidine-tract-binding (PTB) protein, which occurs during normal brain development via the action of miR-124, is sufficient to induce trans-differentiation of fibroblasts into functional neurons. Besides its traditional role in regulated splicing, we show that PTB has a previously undocumented function in the regulation of microRNA functions, suppressing or enhancing microRNA targeting by competitive binding on target mRNA or altering local RNA secondary structure. A key event during neuronal induction is the relief of PTB-mediated blockage of microRNA action on multiple components of the REST complex, thereby derepressing a large array of neuronal genes, including miR-124 and multiple neuronal-specific transcription factors, in nonneuronal cells. This converts a negative feedback loop to a positive one to elicit cellular reprogramming to the neuronal lineage.


Nature | 2013

In vivo cardiac reprogramming contributes to zebrafish heart regeneration

Ruilin Zhang; Peidong Han; Hongbo Yang; Kunfu Ouyang; Derek Lee; Yi-Fan Lin; Karen Ocorr; Guson Kang; Ju Chen; Didier Y. R. Stainier; Deborah Yelon; Neil C. Chi

Despite current treatment regimens, heart failure remains the leading cause of morbidity and mortality in the developed world due to the limited capacity of adult mammalian ventricular cardiomyocytes to divide and replace ventricular myocardium lost from ischaemia-induced infarct. Hence there is great interest to identify potential cellular sources and strategies to generate new ventricular myocardium. Past studies have shown that fish and amphibians and early postnatal mammalian ventricular cardiomyocytes can proliferate to help regenerate injured ventricles; however, recent studies have suggested that additional endogenous cellular sources may contribute to this overall ventricular regeneration. Here we have developed, in the zebrafish (Danio rerio), a combination of fluorescent reporter transgenes, genetic fate-mapping strategies and a ventricle-specific genetic ablation system to discover that differentiated atrial cardiomyocytes can transdifferentiate into ventricular cardiomyocytes to contribute to zebrafish cardiac ventricular regeneration. Using in vivo time-lapse and confocal imaging, we monitored the dynamic cellular events during atrial-to-ventricular cardiomyocyte transdifferentiation to define intermediate cardiac reprogramming stages. We observed that Notch signalling becomes activated in the atrial endocardium following ventricular ablation, and discovered that inhibiting Notch signalling blocked the atrial-to-ventricular transdifferentiation and cardiac regeneration. Overall, these studies not only provide evidence for the plasticity of cardiac lineages during myocardial injury, but more importantly reveal an abundant new potential cardiac resident cellular source for cardiac ventricular regeneration.


Nature | 2012

Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes

Yiguo Wang; Gang Li; Jason Goode; José C. Paz; Kunfu Ouyang; Robert A. Screaton; Wolfgang H. Fischer; Ju Chen; Ira Tabas; Marc Montminy

In the fasted state, increases in circulating glucagon promote hepatic glucose production through induction of the gluconeogenic program. Triggering of the cyclic AMP pathway increases gluconeogenic gene expression via the de-phosphorylation of the CREB co-activator CRTC2 (ref. 1). Glucagon promotes CRTC2 dephosphorylation in part through the protein kinase A (PKA)-mediated inhibition of the CRTC2 kinase SIK2. A number of Ser/Thr phosphatases seem to be capable of dephosphorylating CRTC2 (refs 2, 3), but the mechanisms by which hormonal cues regulate these enzymes remain unclear. Here we show in mice that glucagon stimulates CRTC2 dephosphorylation in hepatocytes by mobilizing intracellular calcium stores and activating the calcium/calmodulin-dependent Ser/Thr-phosphatase calcineurin (also known as PP3CA). Glucagon increased cytosolic calcium concentration through the PKA-mediated phosphorylation of inositol-1,4,5-trisphosphate receptors (InsP3Rs), which associate with CRTC2. After their activation, InsP3Rs enhanced gluconeogenic gene expression by promoting the calcineurin-mediated dephosphorylation of CRTC2. During feeding, increases in insulin signalling reduced CRTC2 activity via the AKT-mediated inactivation of InsP3Rs. InsP3R activity was increased in diabetes, leading to upregulation of the gluconeogenic program. As hepatic downregulation of InsP3Rs and calcineurin improved circulating glucose levels in insulin resistance, these results demonstrate how interactions between cAMP and calcium pathways at the level of the InsP3R modulate hepatic glucose production under fasting conditions and in diabetes.


Journal of Clinical Investigation | 2012

Mouse and computational models link Mlc2v dephosphorylation to altered myosin kinetics in early cardiac disease.

Farah Sheikh; Kunfu Ouyang; Stuart G. Campbell; Robert C. Lyon; Joyce Chuang; Dan Fitzsimons; Jared Tangney; Carlos Hidalgo; Charles S. Chung; Hongqiang Cheng; Nancy D. Dalton; Yusu Gu; Hideko Kasahara; Majid Ghassemian; Jeffrey H. Omens; Kirk L. Peterson; Henk Granzier; Richard L. Moss; Andrew D. McCulloch; Ju Chen

Actin-myosin interactions provide the driving force underlying each heartbeat. The current view is that actin-bound regulatory proteins play a dominant role in the activation of calcium-dependent cardiac muscle contraction. In contrast, the relevance and nature of regulation by myosin regulatory proteins (for example, myosin light chain-2 [MLC2]) in cardiac muscle remain poorly understood. By integrating gene-targeted mouse and computational models, we have identified an indispensable role for ventricular Mlc2 (Mlc2v) phosphorylation in regulating cardiac muscle contraction. Cardiac myosin cycling kinetics, which directly control actin-myosin interactions, were directly affected, but surprisingly, Mlc2v phosphorylation also fed back to cooperatively influence calcium-dependent activation of the thin filament. Loss of these mechanisms produced early defects in the rate of cardiac muscle twitch relaxation and ventricular torsion. Strikingly, these defects preceded the left ventricular dysfunction of heart disease and failure in a mouse model with nonphosphorylatable Mlc2v. Thus, there is a direct and early role for Mlc2 phosphorylation in regulating actin-myosin interactions in striated muscle contraction, and dephosphorylation of Mlc2 or loss of these mechanisms can play a critical role in heart failure.


Cell Research | 2011

Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals

Huaqiang Fang; Min Chen; Yi Ding; Wei Shang; Jiejia Xu; Xing Zhang; Wanrui Zhang; Kaitao Li; Yao Xiao; Feng Gao; Shujiang Shang; Jing Chao Li; Xiao-Li Tian; Shi-Qiang Wang; Jingsong Zhou; Noah Weisleder; Jianjie Ma; Kunfu Ouyang; Ju Chen; Xianhua Wang; Ming Zheng; Wang Wang; Xiuqin Zhang; Heping Cheng

The mitochondrion is essential for energy metabolism and production of reactive oxygen species (ROS). In intact cells, respiratory mitochondria exhibit spontaneous “superoxide flashes”, the quantal ROS-producing events consequential to transient mitochondrial permeability transition (tMPT). Here we perform the first in vivo imaging of mitochondrial superoxide flashes and tMPT activity in living mice expressing the superoxide biosensor mt-cpYFP, and demonstrate their coupling to whole-body glucose metabolism. Robust tMPT/superoxide flash activity occurred in skeletal muscle and sciatic nerve of anesthetized transgenic mice. In skeletal muscle, imaging tMPT/superoxide flashes revealed labyrinthine three-dimensional networks of mitochondria that operate synchronously. The tMPT/superoxide flash activity surged in response to systemic glucose challenge or insulin stimulation, in an apparently frequency-modulated manner and involving also a shift in the gating mode of tMPT. Thus, in vivo imaging of tMPT-dependent mitochondrial ROS signals and the discovery of the metabolism-tMPT-superoxide flash coupling mark important technological and conceptual advances for the study of mitochondrial function and ROS signaling in health and disease.


Journal of Cell Science | 2009

Obscurin determines the architecture of the longitudinal sarcoplasmic reticulum

Stephan Lange; Kunfu Ouyang; Gretchen A. Meyer; Li Cui; Hongqiang Cheng; Richard L. Lieber; Ju Chen

The giant protein obscurin is thought to link the sarcomere with the sarcoplasmic reticulum (SR). The N-terminus of obscurin interacts with the M-band proteins titin and myomesin, whereas the C-terminus mediates interactions with ankyrin proteins. Here, we investigate the importance of obscurin for SR architecture and organization. Lack of obscurin in cross-striated muscles leads to changes in longitudinal SR architecture and disruption of small ankyrin-1.5 (sAnk1.5) expression and localization. Changes in SR architecture in obscurin knockout mice are also associated with alterations in several SR or SR-associated proteins, such as ankyrin-2 and β-spectrin. Finally, obscurin knockout mice display centralized nuclei in skeletal muscles as a sign of mild myopathy, but have normal sarcomeric structure and preserved muscle function.


Human Molecular Genetics | 2009

Cardiac-specific ablation of Cypher leads to a severe form of dilated cardiomyopathy with premature death

Ming Zheng; Hongqiang Cheng; Xiaodong Li; Jianlin Zhang; Li Cui; Kunfu Ouyang; Liang Han; Ting Zhao; Yusu Gu; Nancy D. Dalton; Marie Louise Bang; Kirk L. Peterson; Ju Chen

Accumulating data suggest a link between alterations/deficiencies in cytoskeletal proteins and the progression of cardiomyopathy and heart failure, although the molecular basis for this link remains unclear. Cypher/ZASP is a cytoskeletal protein localized in the sarcomeric Z-line. Mutations in its encoding gene have been identified in patients with isolated non-compaction of the left ventricular myocardium, dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy. To explore the role of Cypher in myocardium and to better understand molecular mechanisms by which mutations in cypher cause cardiomyopathy, we utilized a conditional approach to knockout Cypher, specially in either developing or adult myocardium. Cardiac-specific Cypher knockout (CKO) mice developed a severe form of DCM with disrupted cardiomyocyte ultrastructure and decreased cardiac function, which eventually led to death before 23 weeks of age. A similar phenotype was observed in inducible cardiac-specific CKO mice in which Cypher was specifically ablated in adult myocardium. In both cardiac-specific CKO models, ERK and Stat3 signaling pathways were augmented. Finally, we demonstrate the specific binding of Cyphers PDZ domain to the C-terminal region of both calsarcin-1 and myotilin within the Z-line. In conclusion, our studies suggest that (i) Cypher plays a pivotal role in maintaining adult cardiac structure and cardiac function through protein-protein interactions with other Z-line proteins, (ii) myocardial ablation of Cypher results in DCM with premature death and (iii) specific signaling pathways participate in Cypher mutant-mediated dysfunction of the heart, and may in concert facilitate the progression to heart failure.

Collaboration


Dive into the Kunfu Ouyang's collaboration.

Top Co-Authors

Avatar

Ju Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Yusu Gu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farah Sheikh

University of California

View shared research outputs
Top Co-Authors

Avatar

Li Cui

University of California

View shared research outputs
Top Co-Authors

Avatar

Xi Fang

University of California

View shared research outputs
Top Co-Authors

Avatar

Jianlin Zhang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge