Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy D. Dalton is active.

Publication


Featured researches published by Nancy D. Dalton.


Nature | 2002

Fibulin-5/DANCE is essential for elastogenesis in vivo.

Tomoyuki Nakamura; Pilar Ruiz Lozano; Yasuhiro Ikeda; Yoshitaka Iwanaga; Aleksander Hinek; Susumu Minamisawa; Ching-Feng Cheng; Kazuhiro Kobuke; Nancy D. Dalton; Yoshikazu Takada; Kei Tashiro; John Ross; Tasuku Honjo; Kenneth R. Chien

The elastic fibre system has a principal role in the structure and function of various types of organs that require elasticity, such as large arteries, lung and skin. Although elastic fibres are known to be composed of microfibril proteins (for example, fibrillins and latent transforming growth factor (TGF)-β-binding proteins) and polymerized elastin, the mechanism of their assembly and development is not well understood. Here we report that fibulin-5 (also known as DANCE), a recently discovered integrin ligand, is an essential determinant of elastic fibre organization. fibulin-5-/- mice generated by gene targeting exhibit a severely disorganized elastic fibre system throughout the body. fibulin-5-/- mice survive to adulthood, but have a tortuous aorta with loss of compliance, severe emphysema, and loose skin (cutis laxa). These tissues contain fragmented elastin without an increase of elastase activity, indicating defective development of elastic fibres. Fibulin-5 interacts directly with elastic fibres in vitro, and serves as a ligand for cell surface integrins αvβ3, αvβ5 and α9β1 through its amino-terminal domain. Thus, fibulin-5 may provide anchorage of elastic fibres to cells, thereby acting to stabilize and organize elastic fibres in the skin, lung and vasculature.


Circulation Research | 2003

The δC Isoform of CaMKII Is Activated in Cardiac Hypertrophy and Induces Dilated Cardiomyopathy and Heart Failure

Tong Zhang; Lars S. Maier; Nancy D. Dalton; Shigeki Miyamoto; John Ross; Donald M. Bers; Joan Heller Brown

Abstract— Recent studies have demonstrated that transgenic (TG) expression of either Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) or CaMKII&dgr;B, both of which localize to the nucleus, induces cardiac hypertrophy. However, CaMKIV is not present in heart, and cardiomyocytes express not only the nuclear CaMKII&dgr;B but also a cytoplasmic isoform, CaMKII&dgr;C. In the present study, we demonstrate that expression of the &dgr;C isoform of CaMKII is selectively increased and its phosphorylation elevated as early as 2 days and continuously for up to 7 days after pressure overload. To determine whether enhanced activity of this cytoplasmic &dgr;C isoform of CaMKII can lead to phosphorylation of Ca2+ regulatory proteins and induce hypertrophy, we generated TG mice that expressed the &dgr;C isoform of CaMKII. Immunocytochemical staining demonstrated that the expressed transgene is confined to the cytoplasm of cardiomyocytes isolated from these mice. These mice develop a dilated cardiomyopathy with up to a 65% decrease in fractional shortening and die prematurely. Isolated myocytes are enlarged and exhibit reduced contractility and altered Ca2+ handling. Phosphorylation of the ryanodine receptor (RyR) at a CaMKII site is increased even before development of heart failure, and CaMKII is found associated with the RyR in immunoprecipitates from the CaMKII TG mice. Phosphorylation of phospholamban is also increased specifically at the CaMKII but not at the PKA phosphorylation site. These findings are the first to demonstrate that CaMKII&dgr;C can mediate phosphorylation of Ca2+ regulatory proteins in vivo and provide evidence for the involvement of CaMKII&dgr;C activation in the pathogenesis of dilated cardiomyopathy and heart failure.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice

Gianluigi Condorelli; Alessandra Drusco; Giorgio Stassi; Alfonso Bellacosa; Roberta Roncarati; Guido Iaccarino; Matteo A. Russo; Yusu Gu; Nancy D. Dalton; Clarence Chung; Michael V.G. Latronico; Claudio Napoli; Junichi Sadoshima; Carlo M. Croce; John Ross

The serine-threonine kinase Akt seems to be central in mediating stimuli from different classes of receptors. In fact, both IGF-1 and IL6-like cytokines induce hypertrophic and antiapoptotic signals in cardiomyocytes through PI3K-dependent Akt activation. More recently, it was shown that Akt is involved also in the hypertrophic and antiapoptotic effects of β-adrenergic stimulation. Thus, to determine the effects of Akt on cardiac function in vivo, we generated a model of cardiac-specific Akt overexpression in mice. Transgenic mice were generated by using the E40K, constitutively active mutant of Akt linked to the rat α-myosin heavy chain promoter. The effects of cardiac-selective Akt overexpression were studied by echocardiography, cardiac catheterization, histological and biochemical techniques. We found that Akt overexpression produced cardiac hypertrophy at the molecular and histological levels, with a significant increase in cardiomyocyte cell size and concentric LV hypertrophy. Akt-transgenic mice also showed a remarkable increase in cardiac contractility compared with wild-type controls as demonstrated by the analysis of left ventricular (dP/dtmax) in an invasive hemodynamic study, although with graded dobutamine infusion, the maximum response was not different from that in controls. Diastolic function, evaluated by left ventricular dP/dtmin, was not affected at rest but was impaired during graded dobutamine infusion. Isoproterenol-induced cAMP levels, β-adrenergic receptor (β-AR) density, and β-AR affinity were not altered compared with control mice. Moreover, studies on signaling pathway activation from myocardial extracts demonstrated that glycogen synthase kinase3-β is phosphorylated, whereas p42/44 mitogen-activated protein kinases is not, indicating that Akt induces hypertrophy in vivo by activating the glycogen synthase kinase3-β/GATA 4 pathway. In summary, our results not only demonstrate that Akt regulates cardiomyocyte cell size in vivo, but, importantly, show that Akt modulates cardiac contractility in vivo without directly affecting β-AR signaling capacity.


Circulation | 1996

Transthoracic Echocardiography in Models of Cardiac Disease in the Mouse

Nobuaki Tanaka; Nancy D. Dalton; Lan Mao; Howard A. Rockman; Kirk L. Peterson; Kim R. Gottshall; John J. Hunter; Kenneth R. Chien; John Ross

BACKGROUND Transthoracic echocardiography (M-mode and Doppler) offers a noninvasive approach for in vivo evaluation of the mouse heart. The present study examines its usefulness for assessing the morphological/functional phenotype of the left ventricle (LV) in several transgenic and surgical murine models of cardiac disease. METHODS AND RESULTS Observations were made in 83 intact, anesthetized mice. In mice with a surgical arteriovenous fistula, volume overload and LV dilation were detected. In normal mice, echocardiographic indexes of increased contractility (dobutamine) were confirmed by LV dP/dtmax. In transgenic mice with overexpression of the beta 2-adrenergic receptor, heart rate and mean velocity of circumferential fiber shortening were increased, indicating enhanced contractility. In colony screening of transgenic mice overexpressing the H-ras gene, 45% had increased LV wall thickness (> 0.9 mm), and those showing a striking increase were selected for breeding. In mice with LV hypertrophy (aortic constriction) and normal mice, the actual LV mass determined by echocardiography correlated well (r = .93), and 95% confidence limits were determined. The maximum intraobserver and interobserver coefficients of variation for M-mode data were 0.03 +/- 0.29 mm (+/- 2 SD), < 10% for LV internal dimensions but 27% to 30% for wall thickness. CONCLUSIONS These studies provide the first application of transthoracic echocardiography for morphological/functional characterization of the cardiac phenotype in transgenic and surgical murine models, including (1) high reliability for detecting LV chamber dilation and function; (2) reliability (and its limits) for determining abnormal LV wall thickness and LV mass; (3) identification of marked, sometimes asymmetrical, hypertrophy in a transgenic model of hypertrophic cardiomyopathy; and (4) usefulness for transgenic colony screening to identify markedly abnormal phenotypes.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice

You Yang Zhao; Yang Liu; Radu V. Stan; Lian Fan; Yusu Gu; Nancy D. Dalton; Po Hsien Chu; Kirk L. Peterson; John Ross; Kenneth R. Chien

Caveolins are important components of caveolae, which have been implicated in vesicular trafficking and signal transduction. To investigate the in vivo significance of Caveolins in mammals, we generated mice deficient in the caveolin-1 (cav-1) gene and have shown that, in the absence of Cav-1, no caveolae structures were observed in several nonmuscle cell types. Although cav-1−/− mice are viable, histological examination and echocardiography identified a spectrum of characteristics of dilated cardiomyopathy in the left ventricular chamber of the cav-1-deficient hearts, including an enlarged ventricular chamber diameter, thin posterior wall, and decreased contractility. These animals also have marked right ventricular hypertrophy, suggesting a chronic increase in pulmonary artery pressure. Direct measurement of pulmonary artery pressure and histological analysis revealed that the cav-1−/− mice exhibit pulmonary hypertension, which may contribute to the right ventricle hypertrophy. In addition, the loss of Cav-1 leads to a dramatic increase in systemic NO levels. Our studies provided in vivo evidence that cav-1 is essential for the control of systemic NO levels and normal cardiopulmonary function.


Proceedings of the National Academy of Sciences of the United States of America | 2001

A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function

Frank J. Giordano; Hans-Peter Gerber; Simon-Peter Williams; Nicholas VanBruggen; Stuart Bunting; Pilar Ruiz-Lozano; Yusu Gu; Anjali K. Nath; Yan Huang; Reed Hickey; Nancy D. Dalton; Kirk L. Peterson; John Ross; Kenneth R. Chien; Napoleone Ferrara

The role of the cardiac myocyte as a mediator of paracrine signaling in the heart has remained unclear. To address this issue, we generated mice with cardiac myocyte-specific deletion of the vascular endothelial growth factor gene, thereby producing a cardiomyocyte-specific knockout of a secreted factor. The hearts of these mice had fewer coronary microvessels, thinned ventricular walls, depressed basal contractile function, induction of hypoxia-responsive genes involved in energy metabolism, and an abnormal response to β-adrenergic stimulation. These findings establish the critical importance of cardiac myocyte-derived vascular endothelial growth factor in cardiac morphogenesis and determination of heart function. Further, they establish an adult murine model of hypovascular nonnecrotic cardiac contractile dysfunction.


Journal of Clinical Investigation | 2009

Requirement for Ca2+/calmodulin–dependent kinase II in the transition from pressure overload–induced cardiac hypertrophy to heart failure in mice

Haiyun Ling; Tong Zhang; Laetitia Pereira; Christopher K. Means; Hongqiang Cheng; Yusu Gu; Nancy D. Dalton; Kirk L. Peterson; Ju Chen; Donald M. Bers; Joan Heller Brown

Ca2+/calmodulin-dependent kinase II (CaMKII) has been implicated in cardiac hypertrophy and heart failure. We generated mice in which the predominant cardiac isoform, CaMKIIdelta, was genetically deleted (KO mice), and found that these mice showed no gross baseline changes in ventricular structure or function. In WT and KO mice, transverse aortic constriction (TAC) induced comparable increases in relative heart weight, cell size, HDAC5 phosphorylation, and hypertrophic gene expression. Strikingly, while KO mice showed preserved hypertrophy after 6-week TAC, CaMKIIdelta deficiency significantly ameliorated phenotypic changes associated with the transition to heart failure, such as chamber dilation, ventricular dysfunction, lung edema, cardiac fibrosis, and apoptosis. The ratio of IP3R2 to ryanodine receptor 2 (RyR2) and the fraction of RyR2 phosphorylated at the CaMKII site increased significantly during development of heart failure in WT mice, but not KO mice, and this was associated with enhanced Ca2+ spark frequency only in WT mice. We suggest that CaMKIIdelta contributes to cardiac decompensation by enhancing RyR2-mediated sarcoplasmic reticulum Ca2+ leak and that attenuating CaMKIIdelta activation can limit the progression to heart failure.


Cell | 2005

ASF/SF2-regulated CaMKIIδ alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle

Xiangdong Xu; Dongmei Yang; Jian Hua Ding; Wang Wang; Pao Hsien Chu; Nancy D. Dalton; Huan You Wang; John R. Bermingham; Zhen Ye; Forrest C. Liu; Michael G. Rosenfeld; James L. Manley; John Ross; Ju Chen; Rui-Ping Xiao; Heping Cheng; Xiang-Dong Fu

The transition from juvenile to adult life is accompanied by programmed remodeling in many tissues and organs, which is key for organisms to adapt to the demand of the environment. Here we report a novel regulated alternative splicing program that is crucial for postnatnal heart remodeling in the mouse. We identify the essential splicing factor ASF/SF2 as a key component of the program, regulating a restricted set of tissue-specific alternative splicing events during heart remodeling. Cardiomyocytes deficient in ASF/SF2 display an unexpected hypercontraction phenotype due to a defect in postnatal splicing switch of the Ca(2+)/calmodulin-dependent kinase IIdelta (CaMKIIdelta) transcript. This failure results in mistargeting of the kinase to sarcolemmal membranes, causing severe excitation-contraction coupling defects. Our results validate ASF/SF2 as a fundamental splicing regulator in the reprogramming pathway and reveal the central contribution of ASF/SF2-regulated CaMKIIdelta alternative splicing to functional remodeling in developing heart.


Journal of Clinical Investigation | 2014

Resident fibroblast lineages mediate pressure overload–induced cardiac fibrosis

Thomas Moore-Morris; Nuno Guimarães-Camboa; Indroneal Banerjee; Alexander C. Zambon; Tatiana Kisseleva; Aurélie Velayoudon; William B. Stallcup; Yusu Gu; Nancy D. Dalton; Marta Cedenilla; Rafael Leandro Gomez-Amaro; Bin Zhou; David A. Brenner; Kirk L. Peterson; Ju Chen; Sylvia M. Evans

Activation and accumulation of cardiac fibroblasts, which result in excessive extracellular matrix deposition and consequent mechanical stiffness, myocyte uncoupling, and ischemia, are key contributors to heart failure progression. Recently, endothelial-to-mesenchymal transition (EndoMT) and the recruitment of circulating hematopoietic progenitors to the heart have been reported to generate substantial numbers of cardiac fibroblasts in response to pressure overload-induced injury; therefore, these processes are widely considered to be promising therapeutic targets. Here, using multiple independent murine Cre lines and a collagen1a1-GFP fusion reporter, which specifically labels fibroblasts, we found that following pressure overload, fibroblasts were not derived from hematopoietic cells, EndoMT, or epicardial epithelial-to-mesenchymal transition. Instead, pressure overload promoted comparable proliferation and activation of two resident fibroblast lineages, including a previously described epicardial population and a population of endothelial origin. Together, these data present a paradigm for the origins of cardiac fibroblasts during development and in fibrosis. Furthermore, these data indicate that therapeutic strategies for reducing pathogenic cardiac fibroblasts should shift from targeting presumptive EndoMT or infiltrating hematopoietically derived fibroblasts, toward common pathways upregulated in two endogenous fibroblast populations.


Circulation | 1999

Adenylylcyclase Increases Responsiveness to Catecholamine Stimulation in Transgenic Mice

Mei Hua Gao; N. Chin Lai; David Roth; Jinyao Zhou; Jian Zhu; Toshihisa Anzai; Nancy D. Dalton; H. Kirk Hammond

BACKGROUND The cellular content of cAMP generated by activation of adenylylcyclase (AC) through the beta-adrenergic receptor (betaAR) is a key determinant of a cells response to catecholamine stimulation. We tested the hypothesis that increased AC content, independently of betaAR number, increases responsiveness to catecholamine stimulation in vivo. METHODS AND RESULTS Transgenic mice with cardiac-directed expression of ACVI showed increased transgene AC expression but no change in myocardial betaAR number or G-protein content. When stimulated through the betaAR, cardiac function was increased, and cardiac myocytes showed increased cAMP production. In contrast, basal cAMP and cardiac function were normal, and long-term transgene expression was not associated with abnormal histological findings or deleterious changes in cardiac function. CONCLUSIONS The amount of AC sets a limit on cardiac beta-adrenergic signaling in vivo, and increased AC, independent of betaAR number and G-protein content, provides a means to regulate cardiac responsiveness to betaAR stimulation. Overexpressing an effector (AC) does not alter transmembrane signaling except when receptors are activated, in contrast to receptor/G-protein overexpression, which yields continuous activation and has detrimental consequences. Our findings establish the importance of AC content in modulating beta-adrenergic signaling in the heart, suggesting a new target for safely increasing cardiac responsiveness to betaAR stimulation.

Collaboration


Dive into the Nancy D. Dalton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yusu Gu

University of California

View shared research outputs
Top Co-Authors

Avatar

Ju Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

John Ross

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kunfu Ouyang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirk U. Knowlton

Intermountain Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge