Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kuniko Kohyama.
European Journal of Immunology | 1998
Yoh Matsumoto; Kuniko Kohyama; Yukihiko Aikawa; Taekyun Shin; Yoko Kawazoe; Yoko Suzuki; Naoyuki Tanuma
To elucidate the role of NK cells and TCRγ δ + T cells in acute experimental autoimmune encephalomyelitis (EAE) induced in Lewis rats, the distribution, number and function of these cells were studied using several methods. Immunohistochemical and flow cytometric analysis revealed that a certain number of NK cells (17 % of the total inflammatory cells) infiltrated the central nervous system (CNS) at the peak stage of EAE and were mainly located in the perivascular region. On the other hand, virtually no TCRγ δ + T cells were found in the CNS. NK‐T (NKR‐P1+ TCRα β + ) cells were few and did not increase in number in the CNS and lymphoid organs. In the cytotoxic assay using YAC‐1 cells, effector cells isolated from the spleen of rats at the peak of EAE showed essentially the same cytotoxicity as those isolated from normal controls although the total number of NK cells decreased to one fifth of that of normal rats. Furthermore, in vivo administration of anti‐NK cell (3.2.3 and anti‐asialo GM1), but not of anti‐TCRγ δ (V65), antibodies exacerbated the clinical features of EAE and induced fatal EAE in some rats. These findings suggest that NK cells play a suppressive role in acute EAE whereas TCRγ δ + T cells are not involved in the development of or recovery from the disease.
Embo Molecular Medicine | 2010
Xiaoli Guo; Chikako Harada; Kazuhiko Namekata; Atsushi Matsuzawa; Monsterrat Camps; Hong Ji; Dominique Swinnen; Catherine Jorand-Lebrun; Mathilde Muzerelle; Pierre-Alain Vitte; Thomas Rückle; Atsuko Kimura; Kuniko Kohyama; Yoh Matsumoto; Hidenori Ichijo; Takayuki Harada
Apoptosis signal‐regulating kinase 1 (ASK1) is an evolutionarily conserved mitogen‐activated protein kinase (MAPK) kinase kinase which plays important roles in stress and immune responses. Here, we show that ASK1 deficiency attenuates neuroinflammation in experimental autoimmune encephalomyelitis (EAE), without affecting the proliferation capability of T cells. Moreover, we found that EAE upregulates expression of Toll‐like receptors (TLRs) in activated astrocytes and microglia, and that TLRs can synergize with ASK1‐p38 MAPK signalling in the release of key chemokines from astrocytes. Consequently, oral treatment with a specific small molecular weight inhibitor of ASK1 suppressed EAE‐induced autoimmune inflammation in both spinal cords and optic nerves. These results suggest that the TLR‐ASK1‐p38 pathway in glial cells may serve as a valid therapeutic target for autoimmune demyelinating disorders including multiple sclerosis.
Journal of Immunology | 2006
Yoh Matsumoto; Hidenori Matsuo; Hiroshi Sakuma; Il-Kwon Park; Yukiko Tsukada; Kuniko Kohyama; Takayuki Kondo; Satoshi Kotorii; Noritoshi Shibuya
Because myasthenia gravis (MG) is an autoimmune disease mediated by Abs specific for the acetylcholine receptor, helper T cells play a role in Ab production. In this study, we have performed large-scale cross-sectional and longitudinal TCR studies by CDR3 spectratyping using PBL and thymus tissues from MG patients. We found that there was no preferential usage of any particular TCR β-chains that was identical among MG patients. However, the longitudinal study clearly demonstrated that one or more TCR Vβ expansions persisted frequently in MG patients. Importantly, persistent TCR expansions correlated with clinical severity and high anti-acetylcholine receptor Ab titer. Finally, examinations of T cells expressing CXCR5, i.e., follicular B-helper T cells, revealed that spectratype expansions in MG patients were detected mainly in the CD4+ CXCR5+ T cell populations, whereas CD8+ T cells were the major source of clonal expansion in healthy subjects. These findings suggest that persistent clonal expansions of T cells in MG patients are associated with the development and maintenance of MG. Close examination of pathogenic T cells in MG provides useful information to elucidate the pathogenesis and to estimate the disease status.
Journal of Neuroimmunology | 1998
Toshihiko Kohji; Naoyuki Tanuma; Yukihiko Aikawa; Yoko Kawazoe; Yoko Suzuki; Kuniko Kohyama; Yoh Matsumoto
To elucidate the role of brain cells in the immune regulation in the central nervous system (CNS), acute and chronic relapsing experimental autoimmune encephalomyelitis (EAE) was induced in Lewis rats and the location of apoptotic inflammatory cells and their interaction with astrocytes and microglia was investigated at various stages of the disease. Apoptotic cells detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) were few in number at day 10-12 post-immunization (PI), increased and peaked at day 13 PI. Then, these cells decreased gradually by day 21 PI. The most characteristic finding was that apoptotic cells were mainly distributed in the CNS parenchyma with only a few cells present in perivascular cuffs. Double staining by the TUNEL method and immunocytochemistry for astrocytes and microglia revealed that astrocytes were more closely associated with apoptotic cells than microglia. Apoptotic cell death may be one mechanism by which T cells are eliminated from the CNS. Furthermore, the present study suggests that astrocytes, rather than microglia, induce programmed cell death of infiltrating inflammatory cells.
Journal of Neuroimmunology | 1998
Taekyun Shin; Naoyuki Tanuma; Seungjoon Kim; Jae-Kwang Jin; Changjong Moon; Kiok Kim; Kuniko Kohyama; Yoh Matsumoto; Byung-Hwa Hyun
We studied the effect of nitric oxide (NO) on experimental autoimmune myocarditis (EAC) in rats. We examined the role of inducible nitric oxide synthase (iNOS), an enzyme that produces NO, on hearts affected with EAC, by testing the effects of aminoguanidine (AG), a selective iNOS inhibitor, on the course of EAC. Western blotting detected iNOS in the affected cardiac tissues, but not in CFA immunized cases. Immunohistochemically, the majority of ED1+ macrophages in the EAC lesions were positive for iNOS and nitrotyrosine. A high dose of AG (200 mg/kg/day) significantly reduced the incidence of EAC (p < 0.05) and ameliorated the histological score for the cardiac inflammation (p < 0.01) compared with the low dose AG (100 mg/kg/day) and vehicle treated groups. The immunoblot analysis showed that a high dose of AG effectively suppressed iNOS in hearts affected with EAC. An iNOS band was barely detected in the high dose AG (200 mg/kg) treated group, while it was distinctively visualized in the vehicle and low dose AG (100 mg/kg) treated groups. These results suggest that iNOS is upregulated in EAC lesions and increased NO production plays an important role in the development of EAC. In addition, selective iNOS inhibitors may have a therapeutic role in treating certain autoimmune diseases including EAC.
Journal of Immunology | 2009
Yoh Matsumoto; Il-Kwon Park; Kuniko Kohyama
Repeated or continuous inflammation of the heart is one of the initiation factors for dilated cardiomyopathy (DCM). In previous studies, we established a DCM animal model by immunizing rats with cardiac C protein. In the present study, we analyze the role of matrix metalloproteinases (MMPs) in experimental autoimmune carditis (EAC) and subsequent DCM to elucidate the pathomechanisms of this disease. In this model, inflammation begins ∼9 days after immunization. At that time, MMP activities were detected by in situ zymography. Real-time PCR analysis revealed continuous up-regulation of MMP-2 mRNA from 2 wk and thereafter. MMP-9 mRNA, however, had only a transient increase at 2 wk. Double staining with in situ zymography and cell markers demonstrated that gelatinase (MMP-2 and MMP-9)-expressing cells are infiltrating macrophages during the early stage and cardiomyocytes at later stages. Minocycline, which inhibits MMP-9 activities more strongly than MMP-2, significantly suppressed EAC, but an MMP-2-specific inhibitor, TISAM, did not affect the course of the disease. Furthermore, immunohistochemical examination revealed that minocycline treatment suppressed T cell and macrophage infiltration strongly, whereas TISAM did not. These findings indicate that MMP-9, but not MMP-2, is involved in the pathogenesis of the acute phase of EAC, and further suggest that MMP-9 inhibitors, minocycline and its derivatives, may be useful therapies for EAC and DCM.
Molecular and Cellular Biology | 2008
Kazuhiko Namekata; Chikako Harada; Kuniko Kohyama; Yoh Matsumoto; Takayuki Harada
ABSTRACT Interleukin-1 (IL-1) is a mediator of brain injury induced by ischemia, trauma, and chronic neurodegenerative disease. IL-1 also has a protective role by preventing neuronal cell death from glutamate neurotoxicity. However, the cellular mechanisms of IL-1 action remain unresolved. In the mammalian retina, glutamate/aspartate transporter (GLAST) is a Na+-dependent, major glutamate transporter localized to Müller glial cells, and loss of GLAST leads to glaucomatous retinal degeneration (T. Harada, C. Harada, K. Nakamura, H. A. Quah, A. Okumura, K. Namekata, T. Saeki, M. Aihara, H. Yoshida, A. Mitani, and K. Tanaka, J. Clin. Investig. 117:1763-1770, 2007). We show here that IL-1 increases glutamate uptake in Müller cells by a mechanism that involves increased membrane Na+/K+-ATPase localization, required for counteracting the Na+-glutamate cotransport. IL-1 activated the p38 mitogen-activated protein kinase (MAPK)/capase 11 pathway, which destabilizes the actin cytoskeleton allowing Na+/K+-ATPase membrane redistribution. Furthermore, pretreatment with IL-1 protected retinal neurons from glutamate neurotoxicity through p38 MAPK signaling. Our observations suggested that IL-1 acts as a potential neuroprotective agent by modulating the functions of the glia-neuron network.
Arthritis & Rheumatism | 2010
Takahiko Sugihara; Naoko Okiyama; Mihoko Suzuki; Kuniko Kohyama; Yoh Matsumoto; Nobuyuki Miyasaka; Hitoshi Kohsaka
OBJECTIVE To substantiate a pathogenic role of cytotoxic CD8 T cells in the development of a murine polymyositis model, C protein-induced myositis (CIM). METHODS Beta(2)-microglobulin-null mutant, perforin-null mutant, and wild-type (WT) C57BL/6 mice were immunized with skeletal muscle C protein fragments to provoke CIM. Regional lymph node CD8 or CD4 T cells stimulated with C protein-pulsed dendritic cells were transferred adoptively to naive mice. Inflammation and damage of the muscle tissues were evaluated histologically. RESULTS The incidence of myositis development was significantly lower in β₂-microglobulin-null and perforin-null mutant mice compared with WT mice. Inflammation was less severe in mutant mice, and the incidence of muscle injury was reduced significantly. Adoptive transfer of lymph node T cells from mice with CIM induced myositis in naive recipient mice. The CD8 T cell-induced muscle injuries were significantly more severe than the CD4 T cell-induced muscle injuries. CONCLUSION Perforin-mediated cytotoxicity by CD8 T cells is definitively responsible for muscle injury in CIM.
Journal of Neuroimmunology | 2007
Yoh Matsumoto; Hiroshi Sakuma; Kuniko Kohyama; Il-Kwon Park
Increasing evidence strongly suggest that CD4(+)CD25(+) regulatory T (Treg) cells play a pivotal role in suppressing the development of autoimmune diseases. However, it remains poorly understood how these cells are involved in the persistence of, or recovery from, the diseases. In the present study, we examined the role of CD4(+)CD25(+) Treg cells in chronic EAE and compared the results with those obtained in acute EAE. In EAE lesions, CD25(+) cells decreased rapidly at the beginning of chronic EAE, whereas these cells were maintained at high levels during the recovery from acute EAE. The number of Foxp3(+)CD4(+)CD25(+) Treg and levels of Foxp3 mRNA in the lymphoid organ were significantly lower in chronic EAE. Importantly, the regulatory function of individual CD4(+)CD25(+) Treg cells was maintained in animals with chronic EAE. Furthermore, adoptive transfer of activated CD4(+)CD25(+) Treg cells suppressed the development of chronic EAE. These findings suggest that impairment of the CD4(+)CD25(+) Treg response is critical for development of chronic autoimmune diseases, and can be adjustable by autologous Treg transplantation.
Journal of Immunology | 2004
Yoh Matsumoto; Yukiko Tsukada; Akira Miyakoshi; Hiroshi Sakuma; Kuniko Kohyama
Severe experimental autoimmune myocarditis and subsequent dilated cardiomyopathy (DCM) were successfully produced in Lewis rats by immunization with recombinant cardiac C protein. Seventy-five percent of immunized rats died between days 15 and 49 postimmunization, and all of the survived rats showed typical DCM characterized by the presence of ventricular dilatation and extensive fibrosis. Immunopathological and chemokine analysis during the acute phase revealed that there were marked macrophage infiltration with myocyte necrosis and up-regulation of MCP-1 and IFN-γ-inducible protein-10 (IP-10). Based on these findings, we prepared plasmid DNAs encoding the binding site of CCR2 and CXCR3, which are receptors for MCP-1 and IP-10, respectively. The culture supernatant of cells transfected with these DNAs inhibited the migration of T cells and macrophages induced by MCP-1 and IP-10. Remarkably, administration of the DNAs to C protein-immunized rats prevented the disease progression and rescued animals from death. The present study has demonstrated for the first time that gene therapy targeting the chemokine receptor could be a powerful tool for the control of experimental autoimmune myocarditis and DCM.