Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kunlin Cao is active.

Publication


Featured researches published by Kunlin Cao.


IEEE Transactions on Medical Imaging | 2011

Evaluation of Registration Methods on Thoracic CT: The EMPIRE10 Challenge

K. Murphy; B. van Ginneken; Joseph M. Reinhardt; Sven Kabus; Kai Ding; Xiang Deng; Kunlin Cao; Kaifang Du; Gary E. Christensen; V. Garcia; Tom Vercauteren; Nicholas Ayache; Olivier Commowick; Grégoire Malandain; Ben Glocker; Nikos Paragios; Nassir Navab; V. Gorbunova; Jon Sporring; M. de Bruijne; Xiao Han; Mattias P. Heinrich; Julia A. Schnabel; Mark Jenkinson; Cristian Lorenz; Marc Modat; Jamie R. McClelland; Sebastien Ourselin; S. E. A. Muenzing; Max A. Viergever

EMPIRE10 (Evaluation of Methods for Pulmonary Image REgistration 2010) is a public platform for fair and meaningful comparison of registration algorithms which are applied to a database of intra patient thoracic CT image pairs. Evaluation of nonrigid registration techniques is a nontrivial task. This is compounded by the fact that researchers typically test only on their own data, which varies widely. For this reason, reliable assessment and comparison of different registration algorithms has been virtually impossible in the past. In this work we present the results of the launch phase of EMPIRE10, which comprised the comprehensive evaluation and comparison of 20 individual algorithms from leading academic and industrial research groups. All algorithms are applied to the same set of 30 thoracic CT pairs. Algorithm settings and parameters are chosen by researchers expert in the con figuration of their own method and the evaluation is independent, using the same criteria for all participants. All results are published on the EMPIRE10 website (http://empire10.isi.uu.nl). The challenge remains ongoing and open to new participants. Full results from 24 algorithms have been published at the time of writing. This paper details the organization of the challenge, the data and evaluation methods and the outcome of the initial launch with 20 algorithms. The gain in knowledge and future work are discussed.


Medical Image Analysis | 2008

Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation

Joseph M. Reinhardt; Kai Ding; Kunlin Cao; Gary E. Christensen; Eric A. Hoffman; Shalmali V. Bodas

The main function of the respiratory system is gas exchange. Since many disease or injury conditions can cause biomechanical or material property changes that can alter lung function, there is a great interest in measuring regional lung ventilation and regional specific volume change. We describe a registration-based technique for estimating local lung expansion from multiple respiratory-gated CT images of the thorax. The degree of regional lung expansion is measured using the Jacobian (a function of local partial derivatives) of the registration displacement field, which we show is directly related to specific volume change. We compare the ventral-dorsal patterns of lung expansion estimated across five pressure changes to a xenon CT based measure of specific ventilation in five anesthetized sheep studied in the supine orientation. Using 3D image registration to match images acquired at 10 cm H(2)O and 15 cm H(2)O airway pressures gave the best match between the average Jacobian and the xenon CT specific ventilation (linear regression, average r(2)=0.73).


Annals of Biomedical Engineering | 2011

Analysis of Regional Mechanics in Canine Lung Injury Using Forced Oscillations and 3D Image Registration

David W. Kaczka; Kunlin Cao; Gary E. Christensen; Jason H. T. Bates; Brett A. Simon

Acute lung injury is characterized by heterogeneity of regional mechanical properties, which is thought to be correlated with disease severity. The feasibility of using respiratory input impedance (Zrs) and computed tomographic (CT) image registration for assessing parenchymal mechanical heterogeneity was evaluated. In six dogs, measurements of Zrs before and after oleic acid injury at various distending pressures were obtained, followed by whole lung CT scans. Each Zrs spectrum was fit with a model incorporating variable distributions of regional compliances. CT image pairs at different inflation pressures were matched using an image registration algorithm, from which distributions of regional compliances from the resulting anatomic deformation fields were computed. Under baseline conditions, average model compliance decreased with increasing inflation pressure, reflecting parenchymal stiffening. After lung injury, these average compliances decreased at each pressure, indicating derecruitment, alveolar flooding, or alterations in intrinsic tissue elastance. However, average compliance did not change as inflation pressure increased, consistent with simultaneous recruitment and strain stiffening. Image registration revealed peaked distributions of regional compliances, and that small portions of the lung might undergo relative compression during inflation. The authors conclude that assessments of lung function using Zrs combined with the structural alterations inferred from image registration provide unique but complementary information on the mechanical derangements associated with lung injury.


Medical Physics | 2012

Reproducibility of registration-based measures of lung tissue expansion

Kaifang Du; John E. Bayouth; Kunlin Cao; Gary E. Christensen; Kai Ding; Joseph M. Reinhardt

PURPOSE Lung function depends on lung expansion and contraction during the respiratory cycle. Respiratory-gated CT imaging and 3D image registration can be used to locally estimate lung tissue expansion and contraction (regional lung volume change) by computing the determinant of the Jacobian matrix of the image registration deformation field. In this study, the authors examine the reproducibility of Jacobian-based measures of lung tissue expansion in two repeat 4DCT acquisitions of mechanically ventilated sheep and free-breathing humans. METHODS 4DCT image data from three white sheep and nine human subjects were used for this analysis. In each case, two 4DCT studies were acquired for each subject within a short time interval. The animal subjects were anesthetized and mechanically ventilated, while the humans were awake and spontaneously breathing based on respiratory pacing audio cues. From each 4DCT data set, an image pair consisting of a volume reconstructed near end inspiration and a volume reconstructed near end exhalation was selected. The end inspiration and end exhalation images were registered using a tissue volume preserving deformable registration algorithm and the Jacobian of the registration deformation field was used to measure regional lung expansion. The Jacobian map from the baseline data set was compared to the Jacobian map from the followup data by measuring the voxel-by-voxel Jacobian ratio. RESULTS In the animal subjects, the mean Jacobian ratio (baseline scan Jacobian divided by followup scan Jacobian, voxel-by-voxel) was 0.9984±0.021 (mean ± standard deviation, averaged over the entire lung region). The mean Jacobian ratio was 1.0224±0.058 in the human subjects. The reproducibility of the Jacobian values was found to be strongly dependent on the reproducibility of the subjects respiratory effort and breathing pattern. CONCLUSIONS Lung expansion, a surrogate for lung function, can be assessed using two or more respiratory-gated CT image acquisitions. The results show that good reproducibility can be obtained in anesthetized, mechanically ventilated animals, but variations in respiratory effort and breathing patterns reduce reproducibility in spontaneously-breathing humans. The global linear normalization can globally compensate for breathing effort differences, but a homogeneous scaling does not account for differences in regional lung expansion rates. Additional work is needed to develop compensation procedures or normalization schemes that can account for local variations in lung expansion during respiration.


Medical Physics | 2012

Comparison of image registration based measures of regional lung ventilation from dynamic spiral CT with Xe‐CT

Kai Ding; Kunlin Cao; Matthew K. Fuld; Kaifang Du; Gary E. Christensen; Eric A. Hoffman; Joseph M. Reinhardt

PURPOSE Regional lung volume change as a function of lung inflation serves as an index of parenchymal and airway status as well as an index of regional ventilation and can be used to detect pathologic changes over time. In this paper, the authors propose a new regional measure of lung mechanics-the specific air volume change by corrected Jacobian. The authors compare this new measure, along with two existing registration based measures of lung ventilation, to a regional ventilation measurement derived from xenon-CT (Xe-CT) imaging. METHODS 4DCT and Xe-CT datasets from four adult sheep are used in this study. Nonlinear, 3D image registration is applied to register an image acquired near end inspiration to an image acquired near end expiration. Approximately 200 annotated anatomical points are used as landmarks to evaluate registration accuracy. Three different registration based measures of regional lung mechanics are derived and compared: the specific air volume change calculated from the Jacobian (SAJ); the specific air volume change calculated by the corrected Jacobian (SACJ); and the specific air volume change by intensity change (SAI). The authors show that the commonly used SAI measure can be derived from the direct SAJ measure by using the air-tissue mixture model and assuming there is no tissue volume change between the end inspiration and end expiration datasets. All three ventilation measures are evaluated by comparing to Xe-CT estimates of regional ventilation. RESULTS After registration, the mean registration error is on the order of 1 mm. For cubical regions of interest (ROIs) in cubes with size 20 mm × 20 mm × 20 mm, the SAJ and SACJ measures show significantly higher correlation (linear regression, average r(2) = 0.75 and r(2) = 0.82) with the Xe-CT based measure of specific ventilation (sV) than the SAI measure. For ROIs in slabs along the ventral-dorsal vertical direction with size of 150 mm × 8 mm × 40 mm, the SAJ, SACJ, and SAI all show high correlation (linear regression, average r(2) = 0.88, r(2) = 0.92, and r(2) = 0.87) with the Xe-CT based sV without significant differences when comparing between the three methods. The authors demonstrate a linear relationship between the difference of specific air volume change and difference of tissue volume in all four animals (linear regression, average r(2) = 0.86). CONCLUSIONS Given a deformation field by an image registration algorithm, significant differences between the SAJ, SACJ, and SAI measures were found at a regional level compared to the Xe-CT sV in four sheep that were studied. The SACJ introduced here, provides better correlations with Xe-CT based sV than the SAJ and SAI measures, thus providing an improved surrogate for regional ventilation.


medical image computing and computer assisted intervention | 2009

Evaluation of Lobar Biomechanics during Respiration Using Image Registration

Kai Ding; Youbing Yin; Kunlin Cao; Gary E. Christensen; Ching Long Lin; Eric A. Hoffman; Joseph M. Reinhardt

The human lungs are divided into five independent compartments called lobes. The lobar fissures separate the lung lobes. It is hypothesized that the lobar surfaces slide against each other during respiration. We propose a method to evaluate the sliding motion of the lobar surfaces during respiration using lobe-by-lobe mass-preserving non-rigid image registration. We measure lobar sliding by evaluating the relative displacement on both sides of the fissure. The results show a superior-inferior gradient in the magnitude of lobar sliding. We compare whole-lung-based registration accuracy to lobe-by-lobe registration accuracy using vessel bifurcation landmarks.


information processing in medical imaging | 2007

Registration-derived estimates of local lung expansion as surrogates for regional ventilation

Joseph M. Reinhardt; Gary E. Christensen; Eric A. Hoffman; Kai Ding; Kunlin Cao

The main function of the respiratory system is gas exchange. Since many disease or injury conditions can cause biomechanical or material property changes that can alter lung function, there is a great interest in measuring regional lung ventilation. We describe a registration-based technique for estimating local lung expansion from multiple respiratory-gated CT images of the thorax. The degree of regional lung expansion is measured using the Jacobian of the registration displacement field. We compare lung expansion estimated across five pressure changes to a xenon CT based measure of specific ventilation, and have shown good agreement (linear regression, r2 = 0.89 during gas wash-in) in one animal.


Journal of Biomechanics | 2011

Three-dimensional characterization of regional lung deformation

Ryan Amelon; Kunlin Cao; Kai Ding; Gary E. Christensen; Joseph M. Reinhardt; Madhavan L. Raghavan

The deformation of the lung during inspiration and expiration involves regional variations in volume change and orientational preferences. Studies have reported techniques for measuring the displacement field in the lung based on imaging or image registration. However, means of interpreting all the information in the displacement field in a physiologically relevant manner is lacking. We propose three indices of lung deformation that are determinable from the displacement field: the Jacobian--a measure of volume change, the anisotropic deformation index--a measure of the magnitude of directional preference in volume change and a slab-rod index--a measure of the nature of directional preference in volume change. To demonstrate the utility of these indices, they were determined for six human subjects using deformable image registration on static CT images, registered from FRC to TLC. Volume change was elevated in the inferior-dorsal region as should be expected for breathing in the supine position. The anisotropic deformation index was elevated in the inferior region owing to proximity to the diaphragm and in the lobar fissures owing to sliding. Vessel regions in the lung had a significantly rod-like deformation compared to the whole lung. Compared to upper lobes, lower lobes exhibited significantly greater volume change (19.4% and 21.3% greater in the right and left lungs on average; p<0.005) and anisotropy in deformation (26.3% and 21.8% greater in the right and left lungs on average; p<0.05) with remarkable consistency across subjects. The developed deformation indices lend themselves to exhaustive and physiologically intuitive interpretations of the displacement fields in the lung determined through image-registration techniques or finite element simulations.


Proceedings of SPIE | 2010

Tissue volume and vesselness measure preserving nonrigid registration of lung CT images

Kunlin Cao; Kai Ding; Gary E. Christensen; Joseph M. Reinhardt

In registration-based analyses of lung biomechanics and function, high quality registrations are essential to obtain meaningful results. Various criteria have been suggested to find the correspondence mappings between two lung images acquired at different levels of inflation. In this paper, we describe a new metric, the sum of squared vesselness measure difference (SSVMD), that utilizes the rich information of blood vessel locations and matches similar vesselness patterns in two images. Preserving both the lung tissue volume and the vesselness measure, a registration algorithm is developed to minimize the sum of squared tissue volume difference (SSTVD) and SSVMD together. We compare the registration accuracy using SSTVD + SSVMD with that using SSTVD alone by registering lung CT images of three normal human subjects. After adding the new SSVMD metric, the improvement of registration accuracy is observed by landmark error and fissure positioning error analyses. The average values of landmark error and fissure positioning error are reduced by about 30% and 25%, respectively. The mean landmark error is on the order of 1 mm. Statistical testing of landmark errors shows that there is a statistically significant difference between two methods with p values < 0.05 in all three subjects. Visual inspection shows there are obvious accuracy improvements in the lung regions near the thoracic cage after adding SSVMD.


Annals of Biomedical Engineering | 2014

A Measure for Characterizing Sliding on Lung Boundaries

Ryan Amelon; Kunlin Cao; Joseph M. Reinhardt; Gary E. Christensen; Madhavan L. Raghavan

The lobes of the lung slide relative to each other during breathing. Quantifying lobar sliding can aid in better understanding lung function, better modeling of lung dynamics, and for studying phenomenon such as pleural adhesion. We propose a novel measure to characterize lobe sliding in the lung based on the displacement field obtained from image registration of CT scans. When two sliding lobes are modeled as a continuum, the discontinuity in the displacement field at the fissure will manifest as elevated maximum shear—the proposed measure—which is capable of capturing both the level and orientation of sliding. Six human lungs were analyzed using scans spanning functional residual capacity to total lung capacity. The lung lobes were segmented and registered on a lobe-by-lobe basis to obtain the displacement field from which the proposed sliding measure was calculated. The sliding measure was found to be insignificant in the parenchyma, as relatively little tissue shear occurs here. On the other hand, it was elevated along the fissures. Thus, a map of the proposed sliding measure of the entire lung clearly delineates and quantifies sliding between lung lobes. Sliding is a key aspect of lung deformation during breathing. The proposed measure may help resolve artifacts introduced by sliding in deformation analysis techniques used for radiotherapy.

Collaboration


Dive into the Kunlin Cao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Ding

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Bayouth

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce Libby

University of Virginia

View shared research outputs
Researchain Logo
Decentralizing Knowledge