Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph M. Reinhardt is active.

Publication


Featured researches published by Joseph M. Reinhardt.


IEEE Transactions on Medical Imaging | 2001

Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images

Shiying Hu; Eric A. Hoffman; Joseph M. Reinhardt

Segmentation of pulmonary X-ray computed tomography (CT) images is a precursor to most pulmonary image analysis applications. This paper presents a fully automatic method for identifying the lungs in three-dimensional (3-D) pulmonary X-ray CT images. The method has three main steps. First, the lung region is extracted from the CT images by gray-level thresholding. Then, the left and right lungs are separated by identifying the anterior and posterior junctions by dynamic programming. Finally, a sequence of morphological operations is used to smooth the irregular boundary along the mediastinum in order to obtain results consistent with these obtained by manual analysis, in which only the most central pulmonary arteries are excluded from the lung region. The method has been tested by processing 3-D CT data sets from eight normal subjects, each imaged three times at biweekly intervals with lungs at 90% vital capacity. The authors present results by comparing their automatic method to manually traced borders from two image analysts. Averaged over all volumes, the root mean square difference between the computer and human analysis is 0.8 pixels (0.54 mm). The mean intrasubject change in tissue content over the three scans was 2.75%/spl plusmn/2.29% (mean/spl plusmn/standard deviation).


IEEE Transactions on Medical Imaging | 2011

Evaluation of Registration Methods on Thoracic CT: The EMPIRE10 Challenge

K. Murphy; B. van Ginneken; Joseph M. Reinhardt; Sven Kabus; Kai Ding; Xiang Deng; Kunlin Cao; Kaifang Du; Gary E. Christensen; V. Garcia; Tom Vercauteren; Nicholas Ayache; Olivier Commowick; Grégoire Malandain; Ben Glocker; Nikos Paragios; Nassir Navab; V. Gorbunova; Jon Sporring; M. de Bruijne; Xiao Han; Mattias P. Heinrich; Julia A. Schnabel; Mark Jenkinson; Cristian Lorenz; Marc Modat; Jamie R. McClelland; Sebastien Ourselin; S. E. A. Muenzing; Max A. Viergever

EMPIRE10 (Evaluation of Methods for Pulmonary Image REgistration 2010) is a public platform for fair and meaningful comparison of registration algorithms which are applied to a database of intra patient thoracic CT image pairs. Evaluation of nonrigid registration techniques is a nontrivial task. This is compounded by the fact that researchers typically test only on their own data, which varies widely. For this reason, reliable assessment and comparison of different registration algorithms has been virtually impossible in the past. In this work we present the results of the launch phase of EMPIRE10, which comprised the comprehensive evaluation and comparison of 20 individual algorithms from leading academic and industrial research groups. All algorithms are applied to the same set of 30 thoracic CT pairs. Algorithm settings and parameters are chosen by researchers expert in the con figuration of their own method and the evaluation is independent, using the same criteria for all participants. All results are published on the EMPIRE10 website (http://empire10.isi.uu.nl). The challenge remains ongoing and open to new participants. Full results from 24 algorithms have been published at the time of writing. This paper details the organization of the challenge, the data and evaluation methods and the outcome of the initial launch with 20 algorithms. The gain in knowledge and future work are discussed.


Medical Image Analysis | 2008

Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation

Joseph M. Reinhardt; Kai Ding; Kunlin Cao; Gary E. Christensen; Eric A. Hoffman; Shalmali V. Bodas

The main function of the respiratory system is gas exchange. Since many disease or injury conditions can cause biomechanical or material property changes that can alter lung function, there is a great interest in measuring regional lung ventilation and regional specific volume change. We describe a registration-based technique for estimating local lung expansion from multiple respiratory-gated CT images of the thorax. The degree of regional lung expansion is measured using the Jacobian (a function of local partial derivatives) of the registration displacement field, which we show is directly related to specific volume change. We compare the ventral-dorsal patterns of lung expansion estimated across five pressure changes to a xenon CT based measure of specific ventilation in five anesthetized sheep studied in the supine orientation. Using 3D image registration to match images acquired at 10 cm H(2)O and 15 cm H(2)O airway pressures gave the best match between the average Jacobian and the xenon CT specific ventilation (linear regression, average r(2)=0.73).


IEEE Transactions on Medical Imaging | 2003

Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images

Deniz Aykac; Eric A. Hoffman; Geoffrey McLennan; Joseph M. Reinhardt

The lungs exchange air with the external environment via the pulmonary airways. Computed tomography (CT) scanning can be used to obtain detailed images of the pulmonary anatomy, including the airways. These images have been used to measure airway geometry, study airway reactivity, and guide surgical interventions. Prior to these applications, airway segmentation can be used to identify the airway lumen in the CT images. Airway tree segmentation can be performed manually by an image analyst, but the complexity of the tree makes manual segmentation tedious and extremely time-consuming. We describe a fully automatic technique for segmenting the airway tree in three-dimensional (3-D) CT images of the thorax. We use grayscale morphological reconstruction to identify candidate airways on CT slices and then reconstruct a connected 3-D airway tree. After segmentation, we estimate airway branchpoints based on connectivity changes in the reconstructed tree. Compared to manual analysis on 3-mm-thick electron-beam CT images, the automatic approach has an overall airway branch detection sensitivity of approximately 73%.


IEEE Transactions on Medical Imaging | 2006

Atlas-driven lung lobe segmentation in volumetric X-ray CT images

Li Zhang; Eric A. Hoffman; Joseph M. Reinhardt

High-resolution X-ray computed tomography (CT) imaging is routinely used for clinical pulmonary applications. Since lung function varies regionally and because pulmonary disease is usually not uniformly distributed in the lungs, it is useful to study the lungs on a lobe-by-lobe basis. Thus, it is important to segment not only the lungs, but the lobar fissures as well. In this paper, we demonstrate the use of an anatomic pulmonary atlas, encoded with a priori information on the pulmonary anatomy, to automatically segment the oblique lobar fissures. Sixteen volumetric CT scans from 16 subjects are used to construct the pulmonary atlas. A ridgeness measure is applied to the original CT images to enhance the fissure contrast. Fissure detection is accomplished in two stages: an initial fissure search and a final fissure search. A fuzzy reasoning system is used in the fissure search to analyze information from three sources: the image intensity, an anatomic smoothness constraint, and the atlas-based search initialization. Our method has been tested on 22 volumetric thin-slice CT scans from 12 subjects, and the results are compared to manual tracings. Averaged across all 22 data sets, the RMS error between the automatically segmented and manually segmented fissures is 1.96/spl plusmn/0.71 mm and the mean of the similarity indices between the manually defined and computer-defined lobe regions is 0.988. The results indicate a strong agreement between the automatic and manual lobe segmentations.


Academic Radiology | 2003

Characterization of the interstitial lung diseases via density-based and texture-based analysis of computed tomography images of lung structure and function1 ☆

Eric A. Hoffman; Joseph M. Reinhardt; Milan Sonka; Brett A. Simon; Junfeng Guo; Osama Saba; Deokiee Chon; Shaher Samrah; Hidenori Shikata; Juerg Tschirren; Kálmán Palágyi; Kenneth C. Beck; Geoffrey McLennan

RATIONALE AND OBJECTIVES Efforts to establish a quantitative approach to the computed tomography (CT)-based character ization of the lung parenchyma in interstitial lung disease (including emphysema) has been sought. The accuracy of these tools must be site independent. Multi-detector row CT has remained the gold standard for imaging the lung, and it provides the ability to image both lung structure as well as lung function. MATERIAL AND METHODS Imaging is via multi-detector row CT and protocols include careful control of lung volume during scanning. Characterization includes not only anatomic-based measures but also functional measures including regional parameters derived from measures of pulmonary blood flow and ventilation. Image processing includes the automated detection of the lungs, lobes, and airways. The airways provide the road map to the lung parenchyma. Software automatically detects the airways, the airway centerlines, and the branch points, and then automatically labels the airway tree segments with a standardized set of labels, allowing for intersubject as well intrasubject comparisons across time. By warping all lungs to a common atlas, the atlas provides the range of normality for the various parameters provided by CT imaging. RESULTS Imaged density and textural changes mark underlying structural changes at the most peripheral regions of the lung. Additionally, texture-based alterations in the parameters of blood flow may provide early evidence of pathologic processes. Imaging of stable xenon gas provides a regional measure of ventilation which, when coupled with measures of flow, provide for a textural analysis regional of ventilation-perfusion matching. CONCLUSION With the improved resolution and speed of CT imaging, the patchy nature of regional parenchymal pathology can be imaged as texture of structure and function. With careful control of imaging protocols and the use of objective image analysis methods it is possible to provide site-independent tools for the assessment of interstitial lung disease. There remains a need to validate these methods, which requires interdisciplinary and cross-institutional efforts to gather appropriate data bases of images along with a consensus on appropriate ground truths associated with the images. Furthermore, there is the growing need for scanner manufacturers to focus on not just visually pleasing images, but on quantitatifiably accurate images.


Ophthalmology | 2010

Automated Early Detection of Diabetic Retinopathy

Michael D. Abràmoff; Joseph M. Reinhardt; Stephen R. Russell; James C. Folk; Vinit B. Mahajan; Meindert Niemeijer; Gwénolé Quellec

PURPOSE To compare the performance of automated diabetic retinopathy (DR) detection, using the algorithm that won the 2009 Retinopathy Online Challenge Competition in 2009, the Challenge2009, against that of the one currently used in EyeCheck, a large computer-aided early DR detection project. DESIGN Evaluation of diagnostic test or technology. PARTICIPANTS Fundus photographic sets, consisting of 2 fundus images from each eye, were evaluated from 16670 patient visits of 16,670 people with diabetes who had not previously been diagnosed with DR. METHODS The fundus photographic set from each visit was analyzed by a single retinal expert; 793 of the 16,670 sets were classified as containing more than minimal DR (threshold for referral). The outcomes of the 2 algorithmic detectors were applied separately to the dataset and were compared by standard statistical measures. MAIN OUTCOME MEASURES The area under the receiver operating characteristic curve (AUC), a measure of the sensitivity and specificity of DR detection. RESULTS Agreement was high, and examination results indicating more than minimal DR were detected with an AUC of 0.839 by the EyeCheck algorithm and an AUC of 0.821 for the Challenge2009 algorithm, a statistically nonsignificant difference (z-score, 1.91). If either of the algorithms detected DR in combination, the AUC for detection was 0.86, the same as the theoretically expected maximum. At 90% sensitivity, the specificity of the EyeCheck algorithm was 47.7% and that of the Challenge2009 algorithm was 43.6%. CONCLUSIONS Diabetic retinopathy detection algorithms seem to be maturing, and further improvements in detection performance cannot be differentiated from best clinical practices, because the performance of competitive algorithm development now has reached the human intrareader variability limit. Additional validation studies on larger, well-defined, but more diverse populations of patients with diabetes are needed urgently, anticipating cost-effective early detection of DR in millions of people with diabetes to triage those patients who need further care at a time when they have early rather than advanced DR.


Journal of Magnetic Resonance Imaging | 2007

Breast MRI lesion classification: improved performance of human readers with a backpropagation neural network computer-aided diagnosis (CAD) system.

Lina Arbash Meinel; Alan H. Stolpen; Kevin S. Berbaum; Laurie L. Fajardo; Joseph M. Reinhardt

To develop and test a computer‐aided diagnosis (CAD) system to improve the performance of radiologists in classifying lesions on breast MRI (BMRI).


IEEE Transactions on Medical Imaging | 2012

Extraction of Airways From CT (EXACT'09)

Pechin Lo; Bram van Ginneken; Joseph M. Reinhardt; Tarunashree Yavarna; Pim A. de Jong; Benjamin Irving; Catalin I. Fetita; Margarete Ortner; Romulo Pinho; Jan Sijbers; Marco Feuerstein; Anna Fabijańska; Christian Bauer; Reinhard Beichel; Carlos S. Mendoza; Rafael Wiemker; Jaesung Lee; Anthony P. Reeves; Silvia Born; Oliver Weinheimer; Eva M. van Rikxoort; Juerg Tschirren; Kensaku Mori; Benjamin L. Odry; David P. Naidich; Ieneke J. C. Hartmann; Eric A. Hoffman; Mathias Prokop; Jesper Holst Pedersen; Marleen de Bruijne

This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate fifteen different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference standard from scratch, we propose to construct the reference using results from all algorithms that are to be evaluated. We start by subdividing each segmented airway tree into its individual branch segments. Each branch segment is then visually scored by trained observers to determine whether or not it is a correctly segmented part of the airway tree. Finally, the reference airway trees are constructed by taking the union of all correctly extracted branch segments. Fifteen airway tree extraction algorithms from different research groups are evaluated on a diverse set of twenty chest computed tomography (CT) scans of subjects ranging from healthy volunteers to patients with severe pathologies, scanned at different sites, with different CT scanner brands, models, and scanning protocols. Three performance measures covering different aspects of segmentation quality were computed for all participating algorithms. Results from the evaluation showed that no single algorithm could extract more than an average of 74% of the total length of all branches in the reference standard, indicating substantial differences between the algorithms. A fusion scheme that obtained superior results is presented, demonstrating that there is complementary information provided by the different algorithms and there is still room for further improvements in airway segmentation algorithms.


IEEE Transactions on Medical Imaging | 2009

Anatomy-Guided Lung Lobe Segmentation in X-Ray CT Images

Soumik Ukil; Joseph M. Reinhardt

The human lungs are divided into five distinct anatomic compartments called the lobes, which are separated by the pulmonary fissures. The accurate identification of the fissures is of increasing importance in the early detection of pathologies, and in the regional functional analysis of the lungs. We have developed an automatic method for the segmentation and analysis of the fissures, based on the information provided by the segmentation and analysis of the airway and vascular trees. This information is used to provide a close initial approximation to the fissures, using a watershed transform on a distance map of the vasculature. In a further refinement step, this estimate is used to construct a region of interest (ROI) encompassing the fissures. The ROI is enhanced using a ridgeness measure, which is followed by a 3-D graph search to find the optimal surface within the ROI. We have also developed an automatic method to detect incomplete fissures, using a fast-marching based segmentation of a projection of the optimal surface. The detected incomplete fissure is used to extrapolate and smoothly complete the fissure. We evaluate the method by testing on data sets from normal subjects and subjects with mild to moderate emphysema.

Collaboration


Dive into the Joseph M. Reinhardt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Ding

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Bayouth

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

William E. Higgins

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge