Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kunling Chen is active.

Publication


Featured researches published by Kunling Chen.


Nature Biotechnology | 2013

Targeted genome modification of crop plants using a CRISPR-Cas system

Qiwei Shan; Yanpeng Wang; Jun Li; Yi Zhang; Kunling Chen; Zhen Liang; Kang Zhang; Jinxing Liu; Jianzhong Jeff Xi; Jin-Long Qiu; Caixia Gao

1. Jinek, M. et al. Science 337, 816–821 (2012). 2. Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Nat. Biotechnol. 31, 230–232 (2013). 3. Cong, L. et al. Science 339, 819–823 (2013). 4. Mali, P. et al. Science 339, 823–826 (2013). 5. Hwang, W.Y. et al. Nat. Biotechnol. 31, 227–229 (2013). 6. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L.A. Nat. Biotechnol. 31, 233–239 (2013). 7. Wang, H. et al. Cell 153, 910–918 (2013). 8. Geurts, A.M. et al. Science 325, 433 (2009). 9. Tong, C., Li, P., Wu, N.L., Yan, Y. & Ying, Q.L. Nature 467, 211–213 (2010). 10. Tesson, L. et al. Nat. Biotechnol. 29, 695–696 (2011). 11. Wu, H. & Zhang, Y. Genes Dev. 25, 2436–2452 (2011). 12. Gu, T.P. et al. Nature 477, 606–610 (2011). 13. Dawlaty, M.M. et al. Dev. Cell 24, 310–323 (2013). revision process of this work, an independent study reported the simultaneous generation of multiple mutations in mice7. Our work, together with the mice work, demonstrates that it should be feasible to produce genetargeted models in rodents and probably other mammalian species using the CRISPRCas systems.


Journal of Genetics and Genomics | 2014

Targeted Mutagenesis in Zea mays Using TALENs and the CRISPR/Cas System

Zhen Liang; Kang Zhang; Kunling Chen; Caixia Gao

Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have emerged as powerful tools for genome editing in a variety of species. Here, we report, for the first time, targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. We designed five TALENs targeting 4 genes, namely ZmPDS, ZmIPK1A, ZmIPK, ZmMRP4, and obtained targeting efficiencies of up to 23.1% in protoplasts, and about 13.3% to 39.1% of the transgenic plants were somatic mutations. Also, we constructed two gRNAs targeting the ZmIPK gene in maize protoplasts, at frequencies of 16.4% and 19.1%, respectively. In addition, the CRISPR/Cas system induced targeted mutations in Z. mays protoplasts with efficiencies (13.1%) similar to those obtained with TALENs (9.1%). Our results show that both TALENs and the CRISPR/Cas system can be used for genome modification in maize.


Molecular Plant | 2013

Rapid and Efficient Gene Modification in Rice and Brachypodium Using TALENs

Qiwei Shan; Yanpeng Wang; Kunling Chen; Zhen Liang; Jun Li; Yi Zhang; Kang Zhang; Jinxing Liu; Daniel F. Voytas; Xuelian Zheng; Yong Zhang; Caixia Gao

In the past few years, the use of sequence-specific nucleases for efficient targeted mutagenesis has provided plant biologists with a powerful new approach for understanding gene function and developing new traits. These nucleases create DNA double-strand breaks at chromosomal targeted sites that are primarily repaired by the non-homologous end joining (NHEJ) or homologous recombination (HR) pathways. NHEJ is often imprecise and can introduce mutations at target sites resulting in the loss of gene function. In contrast, HR uses a homologous DNA template for repair and can be employed to create site-specific sequence modifications or targeted insertions (Moynahan and Jasin, 2010).


Nature Communications | 2016

Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA

Yi Zhang; Zhen Liang; Yuan Zong; Yanpeng Wang; Jinxing Liu; Kunling Chen; Jin-Long Qiu; Caixia Gao

Editing plant genomes is technically challenging in hard-to-transform plants and usually involves transgenic intermediates, which causes regulatory concerns. Here we report two simple and efficient genome-editing methods in which plants are regenerated from callus cells transiently expressing CRISPR/Cas9 introduced as DNA or RNA. This transient expression-based genome-editing system is highly efficient and specific for producing transgene-free and homozygous wheat mutants in the T0 generation. We demonstrate our protocol to edit genes in hexaploid bread wheat and tetraploid durum wheat, and show that we are able to generate mutants with no detectable transgenes. Our methods may be applicable to other plant species, thus offering the potential to accelerate basic and applied plant genome-engineering research.


Nature Communications | 2017

Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes

Zhen Liang; Kunling Chen; Tingdong Li; Yi Zhang; Yanpeng Wang; Qian Zhao; Jinxing Liu; Huawei Zhang; Cuimin Liu; Yidong Ran; Caixia Gao

Substantial efforts are being made to optimize the CRISPR/Cas9 system for precision crop breeding. The avoidance of transgene integration and reduction of off-target mutations are the most important targets for optimization. Here, we describe an efficient genome editing method for bread wheat using CRISPR/Cas9 ribonucleoproteins (RNPs). Starting from RNP preparation, the whole protocol takes only seven to nine weeks, with four to five independent mutants produced from 100 immature wheat embryos. Deep sequencing reveals that the chance of off-target mutations in wheat cells is much lower in RNP mediated genome editing than in editing with CRISPR/Cas9 DNA. Consistent with this finding, no off-target mutations are detected in the mutant plants. Because no foreign DNA is used in CRISPR/Cas9 RNP mediated genome editing, the mutants obtained are completely transgene free. This method may be widely applicable for producing genome edited crop plants and has a good prospect of being commercialized.


Nature Biotechnology | 2017

Precise base editing in rice, wheat and maize with a Cas9- cytidine deaminase fusion

Yuan Zong; Yanpeng Wang; Chao Li; Rui Zhang; Kunling Chen; Yidong Ran; Jin-Long Qiu; Daowen Wang; Caixia Gao

Targeted base editing in plants without the need for a foreign DNA donor or double-stranded DNA cleavage would accelerate genome modification and breeding in a wide array of crops. We used a CRISPR–Cas9 nickase-cytidine deaminase fusion to achieve targeted conversion of cytosine to thymine from position 3 to 9 within the protospacer in both protoplasts and regenerated rice, wheat and maize plants at frequencies of up to 43.48%.


Journal of Genetics and Genomics | 2013

TALENs:Customizable Molecular DNA Scissors for Genome Engineering of Plants

Kunling Chen; Caixia Gao

Precise genome modification with engineered nucleases is a powerful tool for studying basic biology and applied biotechnology. Transcription activator-like effector nucleases (TALENs), consisting of an engineered specific (TALE) DNA binding domain and a Fok I cleavage domain, are newly developed versatile reagents for genome engineering in different organisms. Because of the simplicity of the DNA recognition code and their modular assembly, TALENs can act as customizable molecular DNA scissors inducing double-strand breaks (DSBs) at given genomic location. Thus, they provide a valuable approach to targeted genome modifications such as mutations, insertions, replacements or chromosome rearrangements. In this article, we review the development of TALENs, and summarize the principles and tools for TALEN-mediated gene targeting in plant cells, as well as current and potential strategies for use in plant research and crop improvement.


Plant Cell Reports | 2014

Targeted genome modification technologies and their applications in crop improvements

Kunling Chen; Caixia Gao

Recent advances in genome engineering indicate that innovative crops developed by targeted genome modification (TGM) using site-specific nucleases (SSNs) have the potential to avoid the regulatory issues raised by genetically modified organisms. These powerful SSNs tools, comprising zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regulatory interspaced short palindromic repeats/CRISPR-associated systems, enable precise genome engineering by introducing DNA double-strand breaks that subsequently trigger DNA repair pathways involving either non-homologous end-joining or homologous recombination. Here, we review developments in genome-editing tools, summarize their applications in crop organisms, and discuss future prospects. We also highlight the ability of these tools to create non-transgenic TGM plants for next-generation crop breeding.


Nature plants | 2016

Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9.

Jun Li; Xiangbing Meng; Yuan Zong; Kunling Chen; Huawei Zhang; Jinxing Liu; Jiayang Li; Caixia Gao

Sequence-specific nucleases have been exploited to create targeted gene knockouts in various plants1, but replacing a fragment and even obtaining gene insertions at specific loci in plant genomes remain a serious challenge. Here, we report efficient intron-mediated site-specific gene replacement and insertion approaches that generate mutations using the non-homologous end joining (NHEJ) pathway using the clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9) system. Using a pair of single guide RNAs (sgRNAs) targeting adjacent introns and a donor DNA template including the same pair of sgRNA sites, we achieved gene replacements in the rice endogenous gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) at a frequency of 2.0%. We also obtained targeted gene insertions at a frequency of 2.2% using a sgRNA targeting one intron and a donor DNA template including the same sgRNA site. Rice plants harbouring the OsEPSPS gene with the intended substitutions were glyphosate-resistant. Furthermore, the site-specific gene replacements and insertions were faithfully transmitted to the next generation. These newly developed approaches can be generally used to replace targeted gene fragments and to insert exogenous DNA sequences into specific genomic sites in rice and other plants.


Methods | 2014

An efficient TALEN mutagenesis system in rice

Kunling Chen; Qiwei Shan; Caixia Gao

Targeted gene mutagenesis is a powerful tool for elucidating gene function and facilitating genetic improvement in rice. TALENs (transcription activator-like effector nucleases), consisting of a custom TALE DNA binding domain fused to a nonspecific FokI cleavage domain, are one of the most efficient genome engineering methods developed to date. The technology of TALENs allows DNA double-strand breaks (DSBs) to be introduced into predetermined chromosomal loci. DSBs trigger DNA repair mechanisms and can result in loss of gene function by error-prone non-homologous end joining (NHEJ), or they can be exploited to modify gene function or activity by precise homologous recombination (HR). In this paper, we describe a detailed protocol for constructing TALEN expression vectors, assessing nuclease activities in vivo using rice protoplast-based assays, generating and introducing TALEN DNAs into embryogenic calluses of rice and identifying TALEN-generated mutations at targeted genomic sites. Using these methods, T0 rice plants resulting from TALEN mutagenesis can be produced within 4-5 months.

Collaboration


Dive into the Kunling Chen's collaboration.

Top Co-Authors

Avatar

Caixia Gao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jinxing Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yi Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhen Liang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Huawei Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jin-Long Qiu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yanpeng Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qiwei Shan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kang Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Daowen Wang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge