Kuo-Hui Yu
National Cheng Kung University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kuo-Hui Yu.
IEEE Transactions on Electron Devices | 2001
Wen-Chau Liu; Hsi-Jen Pan; Huey-Ing Chen; Kun-Wei Lin; Shiou-Ying Cheng; Kuo-Hui Yu
Steady-state and transient hydrogen-sensing characteristics of a novel Pd/InP metal-oxide-semiconductor (MOS) Schottky diode under atmospheric conditions are presented and studied. In presence of oxide layer, the significant increase of barrier height improves the hydrogen sensitivity even at lower operating temperatures. Even at a very low hydrogen concentration environment, e.g., 15 ppm H/sub 2/ in air, a significant response is obtained. Two effects, i.e., the removal of Fermi-level pinning caused by the donor level in the oxide and the reduction of Pd metal work function dominate the hydrogen sensing mechanism. Furthermore, the reaction kinetics incorporating the water formation upon hydrogen adsorption is investigated. The initial heat of adsorption for the Pd/oxide interface is estimated to be 0.42 eV/hydrogen atom. The coverage dependent heat of adsorption plays an important role in hydrogen response under steady-state conditions. In accordance with the Temkin isotherm behavior, the theoretical prediction of interface coverage agrees well with the experimental results over more than three decades of hydrogen partial pressure.
IEEE Transactions on Electron Devices | 2001
Wen-Chau Liu; Kuo-Hui Yu; Rong-Chau Liu; Kun-Wei Lin; Kuan-Po Lin; Chih-Hung Yen; Chin-Chuan Cheng; Kong-Beng Thei
The temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel (CDC) heterostructure field-effect transistor (HFET) have been studied. Due to the reduction of leakage current and good carrier confinement in the n+-InGaAs/n-GaAs CDC structure, the degradation of device performances with increasing the temperature is insignificant. Experimentally, for a 1 x 100 μm2 device, the gate-drain breakdown voltage of 24.5 (22.0) V, turn-on voltage of 2.05 (1.70) V, off-state drain-source breakdown voltage of 24.4 (18.7) V, transconductance of 161 (138) mS/mm, output conductance of 0.60 (0.60) mS/mm, and voltage gain of 268 (230) are obtained at 300 (450) K, respectively. The shift of Vth from 300 to 450 K is only 13 mV. In addition, the studied device also shows good microwave performances with flat and wide operation regime.
IEEE Electron Device Letters | 2009
Chih-Hung Yen; Yi-Jung Liu; Kuo-Hui Yu; Pei-Ling Lin; Tzu-Pin Chen; Li-Yang Chen; Tsung-Han Tsai; Nan-Yi Huang; Chong-Yi Lee; Wen-Chau Liu
An interesting AlGaInP multiple-quantum-well light-emitting diode (LED) with a direct ohmic contact structure, formed by an indium-tin-oxide (ITO) transparent film and AuBe diffused thin layer, is fabricated and studied. The direct ohmic contact structure is performed by the deposition of an AuBe diffused thin layer and the following activation process on the surface of a Mg-doped GaP window layer. Experimental results demonstrate that a dynamic resistance of 5.7 Omega and a forward voltage of 1.91 V, under an injection current of 20 mA, are obtained. In addition, the studied LED exhibits a higher external quantum efficiency of 9.7% and a larger maximum light-output power of 26.6 mW. The external quantum efficiency is increased by 26% under the injection current of 100 mA, as compared with the conventional LED without this structure. This is mainly attributed to the reduced series resistance resulted from the relatively uniform distribution of AuBe atoms near the GaP layer surface and the effective current spreading ability by the use of ITO film. Moreover, the life behavior of the studied LED, under a 20-mA operation condition, is comparable to the conventional LED without this structure.
Semiconductor Science and Technology | 2001
Kun-Wei Lin; Chin-Chuan Cheng; Shiou-Ying Cheng; Kuo-Hui Yu; Chih-Kai Wang; Hung-Ming Chuang; Jing-Yuh Chen; Cheng-Zu Wu; Wen-Chau Liu
A novel and high-performance Pd/oxide/GaAs hydrogen sensor based on a metal-insulator-semiconductor field-effect transistor (MISFET) is fabricated and studied. In the presence of the interfacial oxide, high sensitivity and significant increase in output drain current are observed. In the presence of hydrogen, a 2×200 µm2 gate dimension device shows good dc characteristics including high turn-on voltage, an obvious variation of drain current and a short response time. In addition, under the applied voltage of -4 V and 537 ppm hydrogen in air, a very high sensitivity of 9473 is obtained. This performance shows that the device studied has a good potential for high-speed and high-sensitivity hydrogen sensor and MISFET integrated circuit applications.
IEEE Electron Device Letters | 1999
Wen-Chan Liu; Wen-Lung Chang; Wen-Shiung Lour; Hsi-Jen Pan; Wei-Chou Wang; Jing-Yuh Chen; Kuo-Hui Yu; S.C. Feng
This letter reports a new and high-performance InGaP/In/sub x/Ga/sub 1-x/As high electron mobility transistor (HEMT) with an inverted delta-doped V-shaped channel. Due to the presence of V-shaped inverted delta-doped InGaP/In/sub x/Ga/sub 1-x/As structure, good carrier confinement and a flat and wide transconductance operation regime are expected. Experimentally, the fabricated device (1/spl times/100 /spl mu/m/sup 2/) shows a high gate-to-drain breakdown voltage of 30 V and a high output drain saturation current density of 826 mA/mm at V/sub GS/=2.5 V. The high transconductance expands over a very broad operation range with the maximum value of 201 mS/mm at 300 K. Meanwhile, the studied device exhibits a good microwave frequency linearity.
IEEE Electron Device Letters | 2000
Wen-Chau Liu; Hsi-Jen Pan; Wei-Chou Wang; Kong-Beng Thei; Kwun-Wei Lin; Kuo-Hui Yu; Chin-Chuan Cheng
In this work, we report the temperature-dependent characteristics of a new InP/InGaAlAs heterojunction bipolar transistor (HBT). In order to improve the dc performance of conventional InGaAs-based single HBTs, the quaternary In/sub 0.53/Ga/sub 0.34/Al/sub 0.13/As with a wider bandgap is employed as the material for both the base and collector layers. Experimentally, the studied device exhibits a relatively high common-emitter breakdown voltage and low output conductance even at high temperature. Based on the breakdown mechanism of avalanche multiplication, the negative temperature dependence of breakdown voltage is attributed to the positive temperature-dependent impact ionization coefficient. Furthermore, the temperature dependence of current gain is investigated and reported. It is believed that the suppression of hole injection current with decreasing temperature is responsible for the opposite variation of current gains at high current levels.
IEEE Transactions on Electron Devices | 2001
Wen-Chau Liu; Kuo-Hui Yu; Kun-Wei Lin; Jung-Hui Tsai; Cheng-Zu Wu; Kuan-Po Lin; Chih-Hung Yen
A new field-effect transistor using a high-barrier n/sup +/ -GaAs/p/sup +/-InGaP/n-GaAs camel-like gate and GaAs/InGaAs heterostructure-channel has been fabricated successfully and demonstrated. Experimentally, an ultra high gate-drain breakdown voltage of 52 V, a high drain-source operation voltage over 20 V with low leakage currents, and a high drain-source off-state breakdown voltage of 39.7 V are obtained for a 1/spl times/100 /spl mu/m/sup 2/ device. The high breakdown behavior is attributed to the use of high barrier camel-like gate and heterostructure channels to reduce the undesired leakage current. Furthermore, the studied device also shows high breakdown behavior in a high temperature environment and good microwave characteristics. Therefore, based on these characteristics, the studied device is suitable for high-breakdown, low-leakage, and high-temperature applications.
IEEE Transactions on Electron Devices | 2001
Wen-Chau Liu; Wen-Lung Chang; Wen-Shiung Lour; Kuo-Hui Yu; Kun-Wei Lin; Chin-Chuan Cheng; Shiou-Ying Cheng
A newly designed inverted delta-doped V-shaped GaInP/In/sub x/Ga/sub 1-x/As/GaAs pseudomorphic high electron mobility transistor (PHEMT) has been successfully fabricated and studied. For a 1/spl times/100 /spl mu/m/sup 2/ device, a high gate-to-drain breakdown voltage over 30 V at 300 K is found. In addition, a maximum transconductance of 201 mS/mm with a broad operation regime for 3 V of gate bias (565 mA/mm of drain current density), a very high output drain saturation current density of 826 mA/mm, and a high DC gain ratio of 575 are obtained. Furthermore, good temperature-dependent performances at the operating temperature ranging from 300 to 450 K are found. The unity current gain cutoff frequency f/sub T/ and maximum oscillation frequency f/sub max/ up to 16 and 34 GHz are obtained, respectively. Meanwhile, the studied device shows the significantly wide and flat gate bias operation regime (3 V) for microwave performances.
Semiconductor Science and Technology | 2000
Hsi-Jen Pan; Wei-Chou Wang; Kong-Beng Thei; Chin-Chuan Cheng; Kuo-Hui Yu; Kun-Wei Lin; Cheng-Zu Wu; Wen-Chau Liu
Temperature-dependent dc performances of lattice-matched InP/InGaAlAs heterojunction bipolar transistors (HBTs) using the InGaAlAs quaternary alloy as the base and collector layers are studied and reported. When compared with conventional InP/InGaAs HBTs, the device studied exhibits a higher common-emitter breakdown voltage and a lower output conductance even at high temperature. The variations of offset voltage and ideality factor at different temperatures have been analysed. In addition, with decreasing temperature from 25 °C toward -196 °C, an irregular temperature behaviour of current gain is observed. At high current levels, the temperature-dependent current gain is mainly determined by the reduced reverse hole injection current. As the current level is lowered, the dominance of reverse hole injection current is correspondingly replaced by the recombination current.
Solid-state Electronics | 2001
Kun-Wei Lin; Kuo-Hui Yu; Wen-Lung Chang; Chin-Chuan Cheng; Kuan-Po Lin; Chih-Hung Yen; Wen-Shiung Lour; Wen-Chau Liu
Abstract The InGaP/InGaAs single and double delta-doped pseudomorphic high electron mobility transistor (δ-PHEMT) grown by low-pressure metal organic chemical vapor deposition have been fabricated and investigated. Based on the employment of the wide-gap InGaP Schottky layer and delta-doped carrier supplier, the high breakdown voltages together with good device characteristics are obtained simultaneously. Furthermore, the newly designed V-shaped InGaAs channel can enhance the carrier confinement effect and increase the product of carrier concentration and mobility. Experimentally, for 1×100 μm 2 devices, the gate-to-drain breakdown voltages larger than 40 (30) V, the transconductances of 90 (201) mS/mm, and the maximum current densities of 646 (846) mA/mm are achieved for the studied single and double δ-PHEMT, respectively. Meanwhile, the measured fT and fmax are 12 (16) and 28.4 (34) GHz, respectively.