Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kurt A. Engleka is active.

Publication


Featured researches published by Kurt A. Engleka.


Nature | 2005

Pax3 functions at a nodal point in melanocyte stem cell differentiation

Deborah Lang; Min Min Lu; Li Huang; Kurt A. Engleka; Maozhen Zhang; Emily Y. Chu; Shari Lipner; Arthur I. Skoultchi; Sarah E. Millar; Jonathan A. Epstein

Most stem cells are not totipotent. Instead, they are partially committed but remain undifferentiated. Upon appropriate stimulation they are capable of regenerating mature cell types. Little is known about the genetic programmes that maintain the undifferentiated phenotype of lineage-restricted stem cells. Here we describe the molecular details of a nodal point in adult melanocyte stem cell differentiation in which Pax3 simultaneously functions to initiate a melanogenic cascade while acting downstream to prevent terminal differentiation. Pax3 activates expression of Mitf, a transcription factor critical for melanogenesis, while at the same time it competes with Mitf for occupancy of an enhancer required for expression of dopachrome tautomerase, an enzyme that functions in melanin synthesis. Pax3-expressing melanoblasts are thus committed but undifferentiated until Pax3-mediated repression is relieved by activated β-catenin. Thus, a stem cell transcription factor can both determine cell fate and simultaneously maintain an undifferentiated state, leaving a cell poised to differentiate in response to external stimuli.


Journal of Clinical Investigation | 2011

Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves

Rajan Jain; Kurt A. Engleka; Stacey Rentschler; Lauren J. Manderfield; Li Li; Lijun Yuan; Jonathan A. Epstein

Congenital anomalies of the aortic valve are common and are associated with progressive valvular insufficiency and/or stenosis. In addition, aneurysm, coarctation, and dissection of the ascending aorta and aortic arch are often associated conditions that complicate patient management and increase morbidity and mortality. These associated aortopathies are commonly attributed to turbulent hemodynamic flow through the malformed valve leading to focal defects in the vessel wall. However, numerous surgical and pathological studies have identified widespread cystic medial necrosis and smooth muscle apoptosis throughout the aortic arch in affected patients. Here, we provide experimental evidence for an alternative model to explain the association of aortic vessel and valvular disease. Using mice with primary and secondary cardiac neural crest deficiencies, we have shown that neural crest contribution to the outflow endocardial cushions (the precursors of the semilunar valves) is required for late gestation valvular remodeling, mesenchymal apoptosis, and proper valve architecture. Neural crest was also shown to contribute to the smooth muscle layer of the wall of the ascending aorta and aortic arch. Hence, defects of cardiac neural crest can result in functionally abnormal semilunar valves and concomitant aortic arch artery abnormalities.


Circulation | 2012

Notch Activation of Jagged1 Contributes to the Assembly of the Arterial Wall

Lauren J. Manderfield; Frances A. High; Kurt A. Engleka; Feiyan Liu; Li Li; Stacey Rentschler; Jonathan A. Epstein

Background— Notch signaling in vascular smooth muscle precursors is required for smooth muscle differentiation. Jagged1 expression on endothelium activates Notch in vascular smooth muscle precursors including those of neural crest origin to initiate the formation of a smooth muscle layer in a maturing blood vessel. Methods and Results— Here, we show that Jagged1 is a direct Notch target in smooth muscle, resulting in a positive feedback loop and lateral induction that propagates a wave of smooth muscle differentiation during aortic arch artery development. In vivo, we show that Notch inhibition in cardiac neural crest impairs Jagged1 messenger RNA expression and results in deficient smooth muscle differentiation and resultant aortic arch artery defects. Ex vivo, Jagged1 ligand activates Notch in neural crest explants and results in activation of Jagged1 messenger RNA, a response that is blocked by Notch inhibition. We examine 15 evolutionary conserved regions within the Jagged1 genomic locus and identify a single Notch response element within the second intron. This element contains a functional Rbp-J binding site demonstrated by luciferase reporter and chromatin immunoprecipitation assays and is sufficient to recapitulate aortic arch artery expression of Jagged1 in transgenic mice. Loss of Jagged1 in neural crest impairs vascular smooth muscle differentiation and results in aortic arch artery defects. Conclusions— Taken together, these results provide a mechanism for lateral induction that allows for a multilayered smooth muscle wall to form around a nascent arterial endothelial tube and identify Jagged1 as a direct Notch target.


Circulation Research | 2012

Islet1 Derivatives in the Heart Are of Both Neural Crest and Second Heart Field Origin

Kurt A. Engleka; Lauren J. Manderfield; Rachael D. Brust; Li Li; Ashley Cohen; Susan M. Dymecki; Jonathan A. Epstein

Rationale: Islet1 (Isl1) has been proposed as a marker of cardiac progenitor cells derived from the second heart field and is utilized to identify and purify cardiac progenitors from murine and human specimens for ex vivo expansion. The use of Isl1 as a specific second heart field marker is dependent on its exclusion from other cardiac lineages such as neural crest. Objective: Determine whether Isl1 is expressed by cardiac neural crest. Methods and Results: We used an intersectional fate-mapping system using the RC::FrePe allele, which reports dual Flpe and Cre recombination. Combining Isl1Cre/+, a SHF driver, and Wnt1::Flpe, a neural crest driver, with Rc::FrePe reveals that some Isl1 derivatives in the cardiac outflow tract derive from Wnt1-expressing neural crest progenitors. In contrast, no overlap was observed between Wnt1-derived neural crest and an alternative second heart field driver, Mef2c-AHF-Cre. Conclusions: Isl1 is not restricted to second heart field progenitors in the developing heart but also labels cardiac neural crest. The intersection of Isl1 and Wnt1 lineages within the heart provides a caveat to using Isl1 as an exclusive second heart field cardiac progenitor marker and suggests that some Isl1-expressing progenitor cells derived from embryos, embryonic stem cultures, or induced pluripotent stem cultures may be of neural crest lineage.


Journal of Clinical Investigation | 2008

Persistent expression of Pax3 in the neural crest causes cleft palate and defective osteogenesis in mice

Meilin Wu; Jun Li; Kurt A. Engleka; Bo Zhou; Min Min Lu; Joshua B. Plotkin; Jonathan A. Epstein

Transcription factors regulate tissue patterning and cell fate determination during development; however, expression of early regulators frequently abates upon differentiation, suggesting that they may also play a role in maintaining an undifferentiated phenotype. The transcription factor paired box 3 (Pax3) is expressed by multipotent neural crest precursors and is implicated in neural crest disorders in humans such as Waardenburg syndrome. Pax3 is required for development of multiple neural crest lineages and for activation of lineage-specific programs, yet expression is generally extinguished once neural crest cells migrate from the dorsal neural tube and differentiate. Using a murine Cre-inducible system, we asked whether persistent Pax3 expression in neural crest derivatives would affect development or patterning. We found that persistent expression of Pax3 in cranial neural crest cells resulted in cleft palate, ocular defects, malformation of the sphenoid bone, and perinatal lethality. Furthermore, we demonstrated that Pax3 directly regulates expression of Sostdc1, a soluble inhibitor of bone morphogenetic protein (BMP) signaling. Persistent Pax3 expression renders the cranial crest resistant to BMP-induced osteogenesis. Thus, one mechanism by which Pax3 maintains the undifferentiated state of neural crest mesenchyme may be to block responsiveness to differentiation signals from the environment. These studies provide in vivo evidence for the importance of Pax3 downregulation during differentiation of multipotent neural crest precursors and cranial development.


Developmental Biology | 2010

Distinct enhancers at the Pax3 locus can function redundantly to regulate neural tube and neural crest expressions.

Karl Degenhardt; Rita C. Milewski; Arun Padmanabhan; Mayumi F. Miller; Manvendra K. Singh; Deborah Lang; Kurt A. Engleka; Meilin Wu; Jun Li; Diane Zhou; Nicole Antonucci; Li Li; Jonathan A. Epstein

Pax3 is a transcription factor expressed in somitic mesoderm, dorsal neural tube and pre-migratory neural crest during embryonic development. We have previously identified cis-acting enhancer elements within the proximal upstream genomic region of Pax3 that are sufficient to direct functional expression of Pax3 in neural crest. These elements direct expression of a reporter gene to pre-migratory neural crest in transgenic mice, and transgenic expression of a Pax3 cDNA using these elements is sufficient to rescue neural crest development in mice otherwise lacking endogenous Pax3. We show here that deletion of these enhancer sequences by homologous recombination is insufficient to abrogate neural crest expression of Pax3 and results in viable mice. We identify a distinct enhancer in the fourth intron that is also capable of mediating neural crest expression in transgenic mice and zebrafish. Our analysis suggests the existence of functionally redundant neural crest enhancer modules for Pax3.


Developmental Biology | 2009

Increased thymus- and decreased parathyroid-fated organ domains in Splotch mutant embryos.

Ann V. Griffith; Kim Cardenas; Carla Carter; Julie Gordon; Aimee N. Iberg; Kurt A. Engleka; Jonathan A. Epstein; Nancy R. Manley; Ellen R. Richie

Embryos that are homozygous for Splotch, a null allele of Pax3, have a severe neural crest cell (NCC) deficiency that generates a complex phenotype including spina bifida, exencephaly and cardiac outflow tract abnormalities. Contrary to the widely held perception that thymus aplasia or hypoplasia is a characteristic feature of Pax3(Sp/Sp) embryos, we find that thymic rudiments are larger and parathyroid rudiments are smaller in E11.5-12.5 Pax3(Sp/Sp) compared to Pax3(+/+) embryos. The thymus originates from bilateral third pharyngeal pouch primordia containing endodermal progenitors of both thymus and parathyroid glands. Analyses of Foxn1 and Gcm2 expression revealed a dorsal shift in the border between parathyroid- and thymus-fated domains at E11.5, with no change in the overall cellularity or volume of each shared primordium. The border shift increases the allocation of third pouch progenitors to the thymus domain and correspondingly decreases allocation to the parathyroid domain. Initial patterning in the E10.5 pouch was normal suggesting that the observed change in the location of the organ domain interface arises during border refinement between E10.5 and E11.5. Given the well-characterized NCC defects in Splotch mutants, these findings implicate NCCs in regulating patterning of third pouch endoderm into thymus- versus parathyroid-specified domains, and suggest that organ size is determined in part by the number of progenitor cells specified to a given fate.


Development | 2015

Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest.

Lauren J. Manderfield; Haig Aghajanian; Kurt A. Engleka; Lillian Y. Lim; Feiyan Liu; Rajan Jain; Li Li; Eric N. Olson; Jonathan A. Epstein

Notch signaling has well-defined roles in the assembly of arterial walls and in the development of the endothelium and smooth muscle of the vasculature. Hippo signaling regulates cellular growth in many tissues, and contributes to regulation of organ size, in addition to other functions. Here, we show that the Notch and Hippo pathways converge to regulate smooth muscle differentiation of the neural crest, which is crucial for normal development of the aortic arch arteries and cranial vasculature during embryonic development. Neural crest-specific deletion of the Hippo effectors Yap and Taz produces neural crest precursors that migrate normally, but fail to produce vascular smooth muscle, and Notch target genes such as Jagged1 fail to activate normally. We show that Yap is normally recruited to a tissue-specific Jagged1 enhancer by directly interacting with the Notch intracellular domain (NICD). The Yap-NICD complex is recruited to chromatin by the DNA-binding protein Rbp-J in a Tead-independent fashion. Thus, Hippo signaling can modulate Notch signaling outputs, and components of the Hippo and Notch pathways physically interact. Convergence of Hippo and Notch pathways by the mechanisms described here might be relevant for the function of these signaling cascades in many tissues and in diseases such as cancer. Highlighted article: Direct interaction between the Hippo effector Yap and the Notch intracellular domain regulates Notch target gene expression during vascular smooth muscle differentiation from neural crest.


Developmental Biology | 2009

Menin expression modulates mesenchymal cell commitment to the myogenic and osteogenic lineages.

Arif Aziz; Tetsuaki Miyake; Kurt A. Engleka; Jonathan A. Epstein; John C. McDermott

Menin plays an established role in the differentiation of mesenchymal cells to the osteogenic lineage. Conversely, whether Menin influences the commitment of mesenschymal cells to the myogenic lineage, despite expression in the developing somite was previously unclear. We observed that Menin is down-regulated in C2C12 and C3H10T1/2 mesenchymal cells when muscle differentiation is induced. Moreover, maintenance of Menin expression by constitutive ectopic expression inhibited muscle cell differentiation. Reduction of Menin expression by siRNA technology results in precocious muscle differentiation and concomitantly attenuates BMP-2 induced osteogenesis. Reduced Menin expression antagonizes BMP-2 and TGF-beta1 mediated inhibition of myogenesis. Furthermore, Menin was found to directly interact with and potentiate the transactivation properties of Smad3 in response to TGF-beta1. Finally in concert with these observations, tissue-specific inactivation of Men1 in Pax3-expressing somite precursor cells leads to a patterning defect of rib formation and increased muscle mass in the intercostal region. These data invoke a pivotal role for Menin in the competence of mesenchymal cells to respond to TGF-beta1 and BMP-2 signals. Thus, by modulating cytokine responsiveness Menin functions to alter the balance of multipotent mesenchymal cell commitment to the osteogenic or myogenic lineages.


Journal of Clinical Investigation | 2017

Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction

Vimal Ramjee; Deqiang Li; Lauren J. Manderfield; Feiyan Liu; Kurt A. Engleka; Haig Aghajanian; Christopher B. Rodell; Wen Lu; Vivienne C. Ho; Tao Wang; Li Li; Anamika Singh; Dasan M. Cibi; Jason A. Burdick; Manvendra K. Singh; Rajan Jain; Jonathan A. Epstein

Ischemic heart disease resulting from myocardial infarction (MI) is the most prevalent form of heart disease in the United States. Post-MI cardiac remodeling is a multifaceted process that includes activation of fibroblasts and a complex immune response. T-regulatory cells (Tregs), a subset of CD4+ T cells, have been shown to suppress the innate and adaptive immune response and limit deleterious remodeling following myocardial injury. However, the mechanisms by which injured myocardium recruits suppressive immune cells remain largely unknown. Here, we have shown a role for Hippo signaling in the epicardium in suppressing the post-infarct inflammatory response through recruitment of Tregs. Mice deficient in epicardial YAP and TAZ, two core Hippo pathway effectors, developed profound post-MI pericardial inflammation and myocardial fibrosis, resulting in cardiomyopathy and death. Mutant mice exhibited fewer suppressive Tregs in the injured myocardium and decreased expression of the gene encoding IFN-&ggr;, a known Treg inducer. Furthermore, controlled local delivery of IFN-&ggr; following MI rescued Treg infiltration into the injured myocardium of YAP/TAZ mutants and decreased fibrosis. Collectively, these results suggest that epicardial Hippo signaling plays a key role in adaptive immune regulation during the post-MI recovery phase.

Collaboration


Dive into the Kurt A. Engleka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Li

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haig Aghajanian

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jun Li

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Meilin Wu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Rajan Jain

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Eric N. Olson

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Feiyan Liu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Maozhen Zhang

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge