Kurt Claeys
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kurt Claeys.
PLOS ONE | 2013
Lotte Janssens; Simon Brumagne; Alison McConnell; Kurt Claeys; Madelon Pijnenburg; Chris Burtin; Wim Janssens; Marc Decramer; Thierry Troosters
Introduction Balance deficits are identified as important risk factors for falling in individuals with chronic obstructive pulmonary disease (COPD). However, the specific use of proprioception, which is of primary importance during balance control, has not been studied in individuals with COPD. The objective was to determine the specific proprioceptive control strategy during postural balance in individuals with COPD and healthy controls, and to assess whether this was related to inspiratory muscle weakness. Methods Center of pressure displacement was determined in 20 individuals with COPD and 20 age/gender-matched controls during upright stance on an unstable support surface without vision. Ankle and back muscle vibration were applied to evaluate the relative contribution of different proprioceptive signals used in postural control. Results Individuals with COPD showed an increased anterior-posterior body sway during upright stance (p = 0.037). Compared to controls, individuals with COPD showed an increased posterior body sway during ankle muscle vibration (p = 0.047), decreased anterior body sway during back muscle vibration (p = 0.025), and increased posterior body sway during simultaneous ankle-muscle vibration (p = 0.002). Individuals with COPD with the weakest inspiratory muscles showed the greatest reliance on ankle muscle input when compared to the stronger individuals with COPD (p = 0.037). Conclusions Individuals with COPD, especially those with inspiratory muscle weakness, increased their reliance on ankle muscle proprioceptive signals and decreased their reliance on back muscle proprioceptive signals during balance control, resulting in a decreased postural stability compared to healthy controls. These proprioceptive changes may be due to an impaired postural contribution of the inspiratory muscles to trunk stability. Further research is required to determine whether interventions such as proprioceptive training and inspiratory muscle training improve postural balance and reduce the fall risk in individuals with COPD.
PLOS ONE | 2014
Lotte Janssens; Simon Brumagne; Alison McConnell; Kurt Claeys; Madelon Pijnenburg; Nina Goossens; Chris Burtin; Wim Janssens; Marc Decramer; Thierry Troosters
Background Functional activities, such as the sit-to-stand-to-sit (STSTS) task, are often impaired in individuals with chronic obstructive pulmonary disease (COPD). The STSTS task places a high demand on the postural control system, which has been shown to be impaired in individuals with COPD. It remains unknown whether postural control deficits contribute to the decreased STSTS performance in individuals with COPD. Methods Center of pressure displacement was determined in 18 individuals with COPD and 18 age/gender-matched controls during five consecutive STSTS movements with vision occluded. The total duration, as well as the duration of each sit, sit-to-stand, stand and stand-to-sit phase was recorded. Results Individuals with COPD needed significantly more time to perform five consecutive STSTS movements compared to healthy controls (19±6 vs. 13±4 seconds, respectively; p = 0.001). The COPD group exhibited a significantly longer stand phase (p = 0.028) and stand-to-sit phase (p = 0.001) compared to the control group. In contrast, the duration of the sit phase (p = 0.766) and sit-to-stand phase (p = 0.999) was not different between groups. Conclusions Compared to healthy individuals, individuals with COPD needed significantly more time to complete those phases of the STSTS task that require the greatest postural control. These findings support the proposition that suboptimal postural control is an important contributor to the decreased STSTS performance in individuals with COPD.
Brain | 2015
Madelon Pijnenburg; Simon Brumagne; Karen Caeyenberghs; Lotte Janssens; Nina Goossens; Daniele Marinazzo; Stephan P. Swinnen; Kurt Claeys; Roma Siugzdaite
Individuals with nonspecific low back pain (NSLBP) show a decreased sit-to-stand-to-sit (STSTS) performance. This dynamic sensorimotor task requires integration of sensory and motor information in the brain. Therefore, a better understanding of the underlying central mechanisms of impaired sensorimotor performance and the presence of NSLBP is needed. The aims of this study were to characterize differences in sensorimotor functional connectivity in individuals with NSLBP and to investigate whether the patterns of sensorimotor functional connectivity underlie the impaired STSTS performance. Seventeen individuals with NSLBP and 17 healthy controls were instructed to perform five consecutive STSTS movements as fast as possible. Based on the center of pressure displacement, the total duration of the STSTS task was determined. In addition, resting-state functional connectivity images were acquired and analyzed on a multivariate level using both functional connectivity density mapping and independent component analysis. Individuals with NSLBP needed significantly more time to perform the STSTS task compared to healthy controls. In addition, decreased resting-state functional connectivity of brain areas related to the integration of sensory and/or motor information was shown in the individuals with NSLBP. Moreover, the decreased functional connectivity at rest of the left precentral gyrus and lobule IV and V of the left cerebellum was associated with a longer duration of the STSTS task in both individuals with NSLBP and healthy controls. In summary, individuals with NSLBP showed a reorganization of the sensorimotor network at rest, and the functional connectivity of specific sensorimotor areas was associated with the performance of a dynamic sensorimotor task.
Journal of Electromyography and Kinesiology | 2012
Kurt Claeys; Wim Dankaerts; Lotte Janssens; Simon Brumagne
People with non-specific low back pain (LBP) show hampered performance of dynamic tasks such as sit-to-stance-to-sit movement. However, the underlying mechanisms remain obscure. Therefore, the aim of this study was to assess if proprioceptive impairments influence the performance of the sit-to-stance-to-sit movement. First, the proprioceptive steering of 20 healthy subjects and 106 persons with mild LBP was identified during standing using muscle vibration. Second, five sit-to-stance-to-sit repetitions on a stable support and on foam were performed as fast as possible. Total duration, phase duration, center of pressure (COP) displacement, pelvic and thoracic kinematics were analyzed. People with LBP used less lumbar proprioceptive afference for postural control compared to healthy people (P < 0.0001) and needed more time to perform the five repetitions in both postural conditions (P < 0.05). These time differences were determined in the stance and sit phases (transition phases), but not in the focal movement phases. Moreover, later onsets of anterior pelvic rotation initiation were recorded to start both movement sequences (P < 0.05) and to move from sit-to-stance on foam (P < 0.05). Decreased use of lumbar proprioceptive afference in people with LBP seemed to have a negative influence on the sit-to-stance-to-sit performance and more specifically on the transition phases which demand more control (i.e. sit and stance). Furthermore, slower onsets to initiate the pelvis rotation to move from sit-to-stance illustrate a decrease in pelvic preparatory movement in the LBP group.
Journal of Electromyography and Kinesiology | 2015
Kurt Claeys; Wim Dankaerts; Lotte Janssens; Madelon Pijnenburg; Nina Goossens; Simon Brumagne
Altered proprioceptive postural control has been demonstrated in people with non-specific low back pain (LBP). However, the cause-effect relation remains unclear. Therefore, more prospective studies are necessary. Proprioceptive postural control of 104 subjects was evaluated at baseline using a force plate and with application of vibration stimulation on ankle and back muscles. Spinal postural angles were measured with digital photographs. Psychosocial variables and physical activity were registered using questionnaires. Ninety subjects were followed over two years concerning their LBP status, 14 were lost to follow-up. Four distinct groups were determined after two years based on pain and disability scores: never LBP, no LBP at intake with future mild LBP, mild LBP at intake with no further LBP, LBP at intake with further episodes of mild LBP. Risk factors for developing or sustaining LBP were calculated using logistic regression analysis. A more ankle-steered proprioceptive postural control strategy in upright standing increased the risk for developing or having recurrences of mild LBP within two years (Odds: 3.5; 95% CI: 1.1-10.8; p < 0.05). Increased postural sway, altered spinal postural angles, psychosocial and physical activity outcomes were not identified as risk factors for future mild LBP. These findings could contribute to improving the prevention and rehabilitation of LBP.
Journal of Bodywork and Movement Therapies | 2016
Kurt Claeys; Simon Brumagne; Jan Deklerck; Jacques Vanderhaeghen; Wim Dankaerts
Postural rehabilitation often plays an important role in the management of non-specific low back pain. While cervical and lumbar correlations have been demonstrated previously, the different role of the pelvis and the thoracic spine for postural control in sitting and standing remains unclear. The aim of this study was to investigate postural correlations between all spinal regions in standing and sitting. Based on digital photographs eight postural angles were analyzed in 99 young healthy persons. Pearson correlations between different postural angles were calculated. In sitting pelvic tilt demonstrated mostly medium correlations with five out of seven other postural angles, compared to three in standing. In standing trunk angle showed five out of seven mostly medium correlations with other regions compared to four out of seven in usual sitting. The low and different correlations suggest a large between-subject variability in sagittal spinal posture, without the existence of any optimal sagittal posture.
Clinical Biomechanics | 2016
Lotte Janssens; Simon Brumagne; Kurt Claeys; Madelon Pijnenburg; Nina Goossens; Sofie Rummens; Bart Depreitere
BACKGROUND Individuals with non-specific low back pain show decreased reliance on lumbosacral proprioceptive signals and slower sit-to-stand-to-sit performance. However, little is known in patients after lumbar microdiscectomy. METHODS Patients were randomly assigned into transmuscular (n=12) or paramedian lumbar surgery (n=13). After surgery, the same patients were randomly assigned into individualized active physiotherapy starting 2 weeks after surgery (n=12) or usual care (n=13). Primary outcomes were center of pressure displacement during ankle and back muscles vibration (to evaluate proprioceptive use), and the duration of five sit-to-stand-to-sit movements, evaluated at 2 (baseline), 8 and 24 weeks after surgery. FINDINGS Two weeks after surgery, all patients showed smaller responses to back compared to ankle muscles vibration (P<0.05). Patients that underwent a transmuscular surgical procedure and patients that received physiotherapy switched to larger responses to back muscles vibration at 24 weeks, compared to 2 weeks after surgery (P<0.005), although not seen in the paramedian group and usual care group (P>0.05). Already 8 weeks after surgery, the physiotherapy group needed significantly less time to perform five sit-to-stand-to-sit movements compared to the usual care group (P<0.05). INTERPRETATION Shortly after lumbar microdiscectomy, patients favor reliance on ankle proprioceptive signals over lumbosacral proprioceptive reliance to maintain posture, which resembles the behavior of patients with non-specific low back pain. However, early active physiotherapy after lumbar microdiscectomy facilitated higher reliance on lumbosacral proprioceptive signals and early improvement of sit-to-stand-to-sit performance. Transmuscular lumbar surgery favoured recovery of lumbosacral proprioception 6 months after surgery. CLINICAL TRIAL NUMBER NCT01505595.
European Spine Journal | 2008
Simon Brumagne; Lotte Janssens; Stefanie Knapen; Kurt Claeys; Ege Suuden-Johanson
European Journal of Applied Physiology | 2011
Kurt Claeys; Simon Brumagne; Wim Dankaerts; Henri Kiers; Lotte Janssens
European Spine Journal | 2011
Ege Johanson; Simon Brumagne; Lotte Janssens; Madelon Pijnenburg; Kurt Claeys; Mati Pääsuke