Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kurt Konolige is active.

Publication


Featured researches published by Kurt Konolige.


international conference on computer vision | 2011

ORB: An efficient alternative to SIFT or SURF

Ethan Rublee; Vincent Rabaud; Kurt Konolige; Gary R. Bradski

Feature matching is at the base of many computer vision problems, such as object recognition or structure from motion. Current methods rely on costly descriptors for detection and matching. In this paper, we propose a very fast binary descriptor based on BRIEF, called ORB, which is rotation invariant and resistant to noise. We demonstrate through experiments how ORB is at two orders of magnitude faster than SIFT, while performing as well in many situations. The efficiency is tested on several real-world applications, including object detection and patch-tracking on a smart phone.


international conference on robotics and automation | 2011

G 2 o: A general framework for graph optimization

Rainer Kümmerle; Giorgio Grisetti; Hauke Strasdat; Kurt Konolige; Wolfram Burgard

Many popular problems in robotics and computer vision including various types of simultaneous localization and mapping (SLAM) or bundle adjustment (BA) can be phrased as least squares optimization of an error function that can be represented by a graph. This paper describes the general structure of such problems and presents g2o, an open-source C++ framework for optimizing graph-based nonlinear error functions. Our system has been designed to be easily extensible to a wide range of problems and a new problem typically can be specified in a few lines of code. The current implementation provides solutions to several variants of SLAM and BA. We provide evaluations on a wide range of real-world and simulated datasets. The results demonstrate that while being general g2o offers a performance comparable to implementations of state-of-the-art approaches for the specific problems.


computational intelligence in robotics and automation | 1999

Incremental mapping of large cyclic environments

Jens-Steffen Gutmann; Kurt Konolige

Mobile robots can use geometric or topological maps of their environment to navigate reliably. Automatic creation of such maps is still an unrealized goal, especially in environments that have large cyclical structures. Drawing on recent techniques of global registration and correlation, we present a method, called local registration and global correlation, for reliable reconstruction of consistent global maps from dense range data. The method is attractive because it is incremental, producing an updated map with every new sensor input; and runs in constant time independent of the size of the map (except when closing large cycles). A real-time implementation and results are presented for several indoor environments.


ISRR | 1998

Small Vision Systems: Hardware and Implementation

Kurt Konolige

Robotic systems are becoming smaller, lower power, and cheaper, enabling their application in areas not previously considered. This is true of vision systems as well. SRI’s Small Vision Module (SVM) is a compact, inexpensive realtime device for computing dense stereo range images, which are a fundamental measurement supporting a wide range of computer vision applications. We describe hardware and software issues in the construction of the SVM, and survey implemented systems that use a similar area correlation algorithm on a variety of hardware.


IEEE Transactions on Robotics | 2008

FrameSLAM: From Bundle Adjustment to Real-Time Visual Mapping

Kurt Konolige; Motilal Agrawal

Many successful indoor mapping techniques employ frame-to-frame matching of laser scans to produce detailed local maps as well as the closing of large loops. In this paper, we propose a framework for applying the same techniques to visual imagery. We match visual frames with large numbers of point features, using classic bundle adjustment techniques from computational vision, but we keep only relative frame pose information (a skeleton). The skeleton is a reduced nonlinear system that is a faithful approximation of the larger system and can be used to solve large loop closures quickly, as well as forming a backbone for data association and local registration. We illustrate the workings of the system with large outdoor datasets (10 km), showing large-scale loop closure and precise localization in real time.


european conference on computer vision | 2008

CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching

Motilal Agrawal; Kurt Konolige; Morten Rufus Blas

We explore the suitability of different feature detectors for the task of image registration, and in particular for visual odometry, using two criteria: stability (persistence across viewpoint change) and accuracy (consistent localization across viewpoint change). In addition to the now-standard SIFT, SURF, FAST, and Harris detectors, we introduce a suite of scale-invariant center-surround detectors (CenSurE) that outperform the other detectors, yet have better computational characteristics than other scale-space detectors, and are capable of real-time implementation.


Artificial Intelligence | 1995

A multivalued logic approach to integrating planning and control

Alessandro Saffiotti; Kurt Konolige; Enrique H. Ruspini

Abstract elligent agents embedded in a dynamic, uncertain environment should incorporate capabilities for both planned and reactive behavior. Many current solutions to this dual need focus on one aspect, and treat the other one as secondary. We propose an approach for integrating planning and control based on behavior schemas , which link physical movements to abstract action descriptions. Behavior schemas describe behaviors of an agent, expressed as trajectories of control actions in an environment, and goals can be defined as predicates on these trajectories. Goals and behaviors can be combined to produce conjoint goals and complex controls. The ability of multivalued logics to represent graded preferences allows us to formulate tradeoffs in the combination. Two composition theorems relate complex controls to complex goals, and provide the key to using standard knowledge-based deliberation techniques to generate complex controllers. We report experiments in planning and execution on a mobile robot platform, Flakey.


ISRR | 2010

Large-Scale Visual Odometry for Rough Terrain

Kurt Konolige; Motilal Agrawal; Joan Sola

Motion estimation from stereo imagery, sometimes called visual odometry, is a well-known process. However, it is difficult to achieve good performance using standard techniques. We present the results of several years of work on an integrated system to localize a mobile robot in rough outdoor terrain using visual odometry, with an increasing degree of precision. We discuss issues that are important for real-time, high-precision performance: choice of features, matching strategies, incremental bundle adjustment, and filtering with inertial measurement sensors. Using data with ground truth from an RTK GPS system, we show experimentally that our algorithms can track motion, in off-road terrain, over distances of 10 km, with an error of less than 10 m (0.1%).


intelligent robots and systems | 1998

An experimental comparison of localization methods

Jens Steffen Gutmann; Wolfram Burgard; Dieter Fox; Kurt Konolige

Localization is the process of updating the pose of a robot in an environment, based on sensor readings. In this experimental study, we compare two methods for localization of indoor mobile robots: Markov localization, which uses a probability distribution across a grid of robot poses; and scan matching, which uses Kalman filtering techniques based on matching sensor scans. Both these techniques are dense matching methods, that is, they match dense sets of environment features to an a priori map. To arrive at results for a range of situations, we utilize several different types of environments, and add noise to both the dead-reckoning and the sensors. Analysis shows that, roughly, the scan-matching techniques are more efficient and accurate, but Markov localization is better able to cope with large amounts of noise. These results suggest hybrid methods that are efficient, accurate and robust to noise.


international conference on robotics and automation | 2010

The Office Marathon: Robust navigation in an indoor office environment

Eitan Marder-Eppstein; Eric Berger; Tully Foote; Brian P. Gerkey; Kurt Konolige

This paper describes a navigation system that allowed a robot to complete 26.2 miles of autonomous navigation in a real office environment. We present the methods required to achieve this level of robustness, including an efficient Voxel-based 3D mapping algorithm that explicitly models unknown space. We also provide an open-source implementation of the algorithms used, as well as simulated environments in which our results can be verified.

Collaboration


Dive into the Kurt Konolige's collaboration.

Top Co-Authors

Avatar

Dieter Fox

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan Ko

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge