Kurt Meetz
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kurt Meetz.
European Physical Journal C | 1980
Kurt Meetz
The Lagrangian for a SU(2) Yang-Mills field interacting with a massless isospin 1/2 Dirac field is conformally invariant. Finite energy solutions are obtained by a conformal mapping of Minkowski space onto the compact manifoldS1×S3 with pseudo-Riemannian metric. They are symmetric with respect to the isometric group SO(2)×SO(4) ofS1×S3.
European Physical Journal C | 1992
Kurt Meetz
Hidden symmetries of two dimensional chiral models are analysed from the geometric point of view. The dual symmetry gives rise to generalized isometries of the metric on the space of dependent variables. The Jacobi equation of geodesic deviation is dual invariant and the generalized isometries lead to generalized symmetries of the field equations. Being variational divergence symmetries they generate families of conservation laws.
Archive | 1980
Kurt Meetz; Walter L. Engl
Um das elektrische Feld und das Feld der elektrischen Verschiebung einer Verteilung ruhender Ladungen zu bestimmen, geht man von der partiellen Differentialgleichung 2. Ordnung aus, die den Feldgleichungen und der Materialgleichung (s. 3.4-8) aquivalent ist. Ist die Dielektrizitatskonstante e des betrachteten Mediums konstant, so erhalt man die Poissongleichung (s. 3.4-17):
Archive | 1980
Kurt Meetz; Walter L. Engl
Archive | 1980
Kurt Meetz; Walter L. Engl
\bar \nabla \cdot \bar \nabla V = \Delta V = - \frac{{*\rho }}{{\varepsilon {\varepsilon _O}}}.
Archive | 1980
Kurt Meetz; Walter L. Engl
Archive | 1980
Kurt Meetz; Walter L. Engl
(4.1-1)
Archive | 1980
Kurt Meetz; Walter L. Engl
In einem dispersiven, homogen und isotropen Medium gelten die Materialgleichungen (s. 8.2-52 und 8.2-53)
Archive | 1980
Kurt Meetz; Walter L. Engl
Archive | 1980
Kurt Meetz; Walter L. Engl
\overline {{\rm D}\,} (\overrightarrow {\rm X} ,{\rm \omega })\, = \,*\,{\rm \varepsilon }_{^\circ } {\rm \varepsilon (\omega )}\,\overline {\rm E} (\overrightarrow {\rm X} ,{\rm \omega })\,\,\,,\,\,\,\,\overline {{\rm H}\,} (\overrightarrow {\rm X} ,{\rm \omega })\, = \,*{1 \over {{\rm \mu }_{^\circ }\,{\rm \mu (\omega )}}}\overline {{\rm E}\,} (\overrightarrow {\rm X} ,{\rm \omega })\, \cdot