Walter L. Engl
Technische Hochschule
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Walter L. Engl.
international electron devices meeting | 1975
W. Anheier; Walter L. Engl; O. Manck; A. Wieder
A one-dimensional solution for the distribution of carriers and potential within a planar thyristor will be given. The analysis uses dimensions and physical data obtained from actual device structures. The simulation includes SRH- and Auger recombination mechanisms and Avalanche multiplication as well as mobility saturation effects. The relations between the various internal mechanisms and the different regions of the transfer characteristic are identified. This correlation is required for technological optimization of device performance.
international electron devices meeting | 1974
Armin W. Wieder; Otto Manck; Walter L. Engl
Lateral PNP transistors have been applied in integrated circuits for quite some time. Yet device performance understanding has lacked due to geometrical complexity and thus did not allow device design optimization. This paper solves the problem for a lateral PNP transistor with buried layer, substrate and isolation diffusion by means of a two-dimensional numerical simulation under steady state conditions. Under all injection levels the results pertaining to a particular example show: emitter injection and collector collection performance; the developement of a carrier storage underneath the emitter reaching the buried layer onset; the influence of the buried layer with respect to vertical substrate transistor action and the onset of lateral substrate transistor current flow.
Archive | 1980
Kurt Meetz; Walter L. Engl
Um das elektrische Feld und das Feld der elektrischen Verschiebung einer Verteilung ruhender Ladungen zu bestimmen, geht man von der partiellen Differentialgleichung 2. Ordnung aus, die den Feldgleichungen und der Materialgleichung (s. 3.4-8) aquivalent ist. Ist die Dielektrizitatskonstante e des betrachteten Mediums konstant, so erhalt man die Poissongleichung (s. 3.4-17):
Archive | 1980
Kurt Meetz; Walter L. Engl
Archive | 1980
Kurt Meetz; Walter L. Engl
\bar \nabla \cdot \bar \nabla V = \Delta V = - \frac{{*\rho }}{{\varepsilon {\varepsilon _O}}}.
Archive | 1980
Kurt Meetz; Walter L. Engl
Archive | 1980
Kurt Meetz; Walter L. Engl
(4.1-1)
Archive | 1980
Kurt Meetz; Walter L. Engl
In einem dispersiven, homogen und isotropen Medium gelten die Materialgleichungen (s. 8.2-52 und 8.2-53)
Archive | 1980
Kurt Meetz; Walter L. Engl
Archive | 1980
Kurt Meetz; Walter L. Engl
\overline {{\rm D}\,} (\overrightarrow {\rm X} ,{\rm \omega })\, = \,*\,{\rm \varepsilon }_{^\circ } {\rm \varepsilon (\omega )}\,\overline {\rm E} (\overrightarrow {\rm X} ,{\rm \omega })\,\,\,,\,\,\,\,\overline {{\rm H}\,} (\overrightarrow {\rm X} ,{\rm \omega })\, = \,*{1 \over {{\rm \mu }_{^\circ }\,{\rm \mu (\omega )}}}\overline {{\rm E}\,} (\overrightarrow {\rm X} ,{\rm \omega })\, \cdot